
1

Measuring the Fidelity of a Physical and a Digital
Twin Using Trace Alignments

Paula Muñoz , Manuel Wimmer , Javier Troya and Antonio Vallecillo

Abstract—Digital twins are gaining relevance in many domains to improve the operation and maintenance of complex systems.
Despite their importance, most efforts are currently focused on their design, development, and deployment but do not fully address
their validation. In this paper, we are interested in assessing the fidelity of physical and digital twins and, more specifically, whether they
exhibit twinned behaviors. This will allow engineers to check the suitability of the digital twin for its intended purpose. Our approach
assesses their fidelity by comparing the behavioral traces of the two twins. Our contribution is threefold. First, we define a measure of
equivalence between individual snapshots capable of deciding whether two snapshots are sufficiently similar. Second, we use a trace
alignment algorithm to align the corresponding equivalent states reached by the two twins. Finally, we measure the fidelity of the
behavior of the two twins using the level of alignment achieved in terms of the percentage of matched snapshots and the distance
between the aligned traces. Our proposal has been validated with the digital twins of four cyber-physical systems: an elevator, an
incubator, a robotic arm, and a programmable robotic car. We were able to determine which systems were sufficiently faithful and
which parts of their behavior failed to emulate their counterparts. Finally, we compared our proposal with similar approaches from the
literature, highlighting their respective strengths and weaknesses related to our own.

Index Terms—digital twins, fidelity, alignment, traces.

✦

1 INTRODUCTION

D IGITAL TWINS have emerged as a promising paradigm
to enhance the design, operation, and maintenance

of complex systems. A Digital Twin (DT) is defined as a
virtual representation of a real-world entity or process (the
so-called Physical Twin, PT) synchronized at a specified
frequency and fidelity [1]. Depending on the purpose, the
replica may represent different properties of the PT, such
as physical constraints, appearance, or behavior [2]. The
twinned systems (the DT and PT), the connections between
them, and the set of system services comprise the so-called
Digital Twin System (DTS) [3].

A DT may be created before the PT to explore potential
product characteristics at higher levels of abstraction with
lower costs. They can also be developed after the PT to add
advanced functionality to an existing system and enhance
its operation. Alternatively, DTs can be developed jointly
with the PT, leveraging the more cost-effective design-space
exploration with the final goal of enhancing its operation
during deployment. During operation, DTSs are commonly
used for behavior optimization, monitoring, system valida-
tion, and prediction [2].

The essential requirement to employ a DT in any of the
previous contexts is that it needs to represent the required
properties of the PT accurately. If the DT is not faithful
enough, any predictions or conclusions derived from it will
be unreliable. In this context, the engineering of DTSs be-
comes critical [4]. Currently, most works focus on the design,

• P. Muñoz, J. Troya, and A. Vallecillo are with the ITIS Software at
Universidad de Málaga, 29010 Málaga, Spain. E-mail: {paulam, jtroya,
av}@uma.es

• M. Wimmer is with the CDL-MINT at Johannes Kepler University, 4040
Linz, Austria. Email: manuel.wimmer@jku.at

Manuscript received April 19, 2005; revised August 26, 2015.

development, and deployment of DTSs, but just a few on
validating them [2]. Some of these works apply simulation
and testing during the design phase or consistency monitor-
ing during runtime to find discrepancies between the DT’s
predicted behavior and the PT’s actual behavior. [2].

In this work, we propose an offline method to validate
the twins’ behavior. Here, validation is defined as “the
process of determining the degree to which a computational
model is an accurate representation of the real world from
the perspective of the intended uses of the model” [5].
Usually, model validation consists of comparing the output
behavior of the system with the one of the simulation
model [6]. The results of the comparison determine the
level of accuracy of the digital model [7]. More precisely,
we measure the degree of fidelity of a DT with respect to
its PT. Fidelity is defined as “the degree to which a model
reproduces the actual state and behavior of a system in a
measurable way” [8].

Our approach assesses behavior fidelity by comparing
the two twins’ behavioral traces. In our context, a trace is a
sequence of snapshots. Each snapshot represents the state of
the system at a given moment in time. The use of traces
makes our proposal independent of the DTSs implementa-
tion method. We only compare the behavioral outputs of the
PT and DT, regardless of their origin.

Trace analysis has already been proposed for validation
of complex systems, see, e.g., [7], [9], [10], [11]. However,
when we tried to apply these approaches in the context of
DTSs, we realized that the application of these proposals
presents a number of challenges, as explained next. To
illustrate the challenges, let us take an example from [12],
in which a DTS is proposed to prevent crane collisions in a
limited environment. By considering the PT’s state and envi-
ronment, the DT simulates its movement and warns about

The published version of this paper is available from:
https://ieeexplore.ieee.org/abstract/document/10682975

https://orcid.org/0000-0003-2939-5803
https://orcid.org/0000-0002-1124-7098
https://orcid.org/0000-0002-1314-9694
https://orcid.org/0000-0002-8139-9986

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 2

collisions. The authors developed higher-level abstraction
models to simplify the physics of the crane and reduce
computational time. However, the replica must be faithful so
as not to give false assurance to the operator. The snapshots
will have the x, y, and z coordinates of the crane’s tip at
each time step. Thus, we need to compare the trajectory of
the model with the real system’s trajectory to determine if it
serves the intended purpose before its deployment.

1) Trace alignments. Typically, traces are compared by
considering only the temporal relationships between their
elements, assuming that the states must be reached at the
same times. However, in some cases, we cannot assume that
the two systems are running in unison, and therefore, we
need to align the traces using similarity functions and not
just timestamps. An alignment is defined as a sequence of
matching pairs of snapshots from two traces. For the crane
problem, we could use a simplified model that does not pre-
cisely simulate the movement duration but can still provide
the sequences of positions, i.e., the trajectory, to check for
collisions. In such a case, a comparison based on temporal
relationships would conclude that the model is not faithful.
However, it could be good enough for our requirements
since we only need to validate the sequence of movements.
Thus, we need a general and flexible mechanism to align
the traces before calculating their distance, using different
options to identify the states that should be considered
similar and, therefore, matched. Likewise, we need to define
a threshold capable of deciding when two states are too far
apart to be considered similar.
2) Affine gaps. Trace alignments often contain gaps and
mismatches to signify absent states and discrepancies that
the algorithm penalizes based on constant sanctions. How-
ever, this approach may not work well when the expected
alignments have long gaps, such as when trying to perform
anomaly detection [13], because it produces alignments
with frequent alternation between gaps, mismatches, and
matches. For example, suppose we want to detect a missing
step in the crane’s trajectory. In that case, we would expect
to find one sequence of gaps in the alignment that points
to the missing behavior. Affine gap consists in assigning a
higher penalty to opening a gap than to continuing the
current one, grouping inconsistencies, and allowing a better
interpretation of the results.
3) Low-complexity regions. Low-complexity regions are
trace segments that contain less information about the be-
havior of interest but produce high-scoring matches, e.g.,
a system’s stationary behavior. This causes alignment algo-
rithms to concentrate on them, to the detriment of searching
for alignments in more characteristic parts of the traces.
These low-complexity regions must be identified and soft-
masked in some way. For example, suppose we performed
the alignment of a trace that contains stationary behavior
because the crane does not move for long periods. In that
case, we may find that the behavior of interest, i.e., the
crane’s movement, is not included in the alignment. This
is because the algorithm will focus on aligning the highest-
scoring snapshots, i.e., stationary ones. However, this align-
ment, as it does not include the movement, will not properly
assess the fidelity of the actual trajectory of the crane.
4) Distance metrics. Fidelity measures are usually based

on the distances between traces, using averages or maxi-
mums. However, we need a combined approach, as each is
more appropriate depending on the situation. In addition,
before measuring the distance between two traces, we need
to ensure a minimum percentage of coincident snapshots.
Otherwise, the calculated distances may be meaningless.
These distance metrics help to measure the accuracy of
the reproduced behavior. In an iterative development of
the crane replica, the metrics could determine whether a
model’s accuracy has improved.

In this work, we aim to address these challenges, provid-
ing a suitable offline trace analysis approach for assessing
the fidelity of a DT with respect to a PT, or vice-versa, in
a quantifiable manner. In particular, to compare the traces,
we follow a three-step process. First, we define a comparison
function between individual snapshots capable of deciding
whether two snapshots, i.e., system states, are sufficiently
similar or not. The purpose of the DT will dictate the prop-
erties of interest that will be considered by this comparison
function. For instance, the crane state could include not only
its coordinates but also its weight and the load it carries,
which can affect its movement [12]. While dynamics are not
essential for larger cranes, they are crucial for small mobile
cranes since they heavily affect their movement. Therefore,
before determining the suitability of a replica, we need
to decide which properties need to be replicated and the
required accuracy for each of them. Second, we use a trace
alignment algorithm to align the corresponding equivalent
states reached by the two twins, given a certain similarity
threshold (the so-called maximum acceptable distance, MAD)
defined for each property of interest and the identification
and masking of the appropriate low-complexity regions.
Finally, we measure the fidelity of the two twins’ behavior
using the level of alignment achieved (in terms of the per-
centage of matched snapshots) and two distances between the
aligned traces (average and max).

The work has been validated with the DTSs of four
cyber-physical systems that exhibit different behaviors: an
elevator, an incubator, a robotic arm, and a programmable
robotic car. After the analysis, we were able to determine
which of these systems were sufficiently faithful and which
parts of their behaviors failed to emulate their counterparts.
This provides domain experts with precise guidance on
how to improve the behaviors in the given scenarios. These
examples will also allow us to show three other use cases
of our proposal. In the incubator example, we compare the
fidelity of two DTs of the same PT [14]. The robotic arm
example shows another use case of our proposal, where
the objective is to check if the physical system behaves as
required by the user, i.e., if the PT is faithful to the DT.
Here, the DT acts as the oracle and not as the emulator.
Additionally, we consider a fourth system consisting of a
case study of a Lego Mindstorms NXT Car to show our
approach applied to traces with Boolean and enumerated
attributes.

After this introduction, Section 2 briefly describes the
background of our work. Then, Section 3 describes in de-
tail our proposal, using one case study to illustrate and
motivate it. The configuration of the parameters of the
alignment algorithm and their effects on the fidelity metrics
are discussed in Section 4. Then, Section 5 presents how the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 3

fidelity of a DT can be assessed using our metrics. After
that, Section 6 presents the results of further evaluation
exercises we have conducted to assess our proposal, as well
as its main advantages and limitations. Finally, Section 7
relates our work to other similar approaches and Section 8
concludes with an outline of future work.

2 BACKGROUND

In this section, we will briefly discuss the terminology and
central concepts that form the basis of our proposal. Firstly,
in Section 2.1, we define the central concepts: fidelity, digital
twin, trace, and snapshot. Section 2.2 presents the formal
definitions of the alignment elements and briefly introduces
the two sequence alignment algorithms that inspired our
proposal. Finally, in Section 2.3, we introduce the distance
measure that will be used as a fidelity metric.

2.1 Digital Twins and Fidelity
The core of our contribution revolves around the notion of
fidelity between the twinned systems. Although there is no
agreed definition of what a Digital Twin is, here we adopt
the following one: “A Digital Twin is the virtual represen-
tation of a real-world entity or process, synchronized at a
specified frequency and fidelity” [1]. Here, Fidelity is “the
degree to which a model reproduces a system’s actual state
and behavior in a measurable way” [8].

By behavior, we mean the evolution of the system states
over time, and therefore, in this work, the behavior of
the twinned systems will be represented by traces, which
we also call trajectories. Traces are sequences of snapshots
captured periodically. Snapshots [15] are used to represent
the system states and are defined in terms of objects whose
attribute values capture the state of the relevant properties
of the system at the time when the snapshot was taken.

Of course, fidelity cannot be assessed in general, but
for specific scenarios (e.g., set of inputs and environment
constraints) and taking into account the specific purpose of
the DTS. Hence, the need to define the validity frame of the
validation exercise [16], i.e., the experimental context of a
model in which that model gives predictable results.

For simplicity, in this work, we will assume all snapshots
are expressed at the same level of abstraction, i.e., they
contain the same attributes, and these are of the same
types. Otherwise, the user may define mappings from one
abstraction level to another and implement the needed
transformations. For example, if the DT provides the crane’s
tip coordinates, and the PT provides the servos’ angles, we
could derive the coordinates from the angles, enabling the
comparison.

2.2 Trace Alignment

The first step for comparing the behavioral traces of the two
twins is to align them. Aligning the traces requires iden-
tifying their common snapshots, the mismatches, and the
possible gaps. In order to accurately introduce all concepts
related to trace alignments, we have developed a set of defi-
nitions in Section 2.2.1. Then, we introduce the two sequence
alignment algorithms that form the basis of the proposal
(Section 2.2.2), and, finally, we explain the scoring scheme
used to improve the quality of the alignments (Section 2.2.3).

2.2.1 Trace Alignments
Definition 2.1 (Aligment). Given two sequences of snap-
shots X = {xi}ni=1 and Y = {yi}mi=1, and a comparison
function between snapshots “≈”, an alignment A between X
and Y is a set of pairs A ⊆ {0..n} × {0..m}, which satisfies
the following properties (we assume below that i and j will
always range between {1..n} and {1..m}, respectively).

• All elements of X are paired with at most one ele-
ment of Y , i.e., (i, j1) ∈ A ∧ (i, j2) ∈ A⇒ j1 = j2.

• All elements of Y are paired with at most one ele-
ment of X , i.e., (i1, j) ∈ A ∧ (i2, j) ∈ A⇒ i1 = i2.

• The set of pairs A must be monotonic, i.e., it always
looks ahead: if (i1, j1) ∈ A ∧ (i2, j2) ∈ A then i1 ≤
i2 ⇒ j1 ≤ j2 and vice-versa: j1 ≤ j2 ⇒ i1 ≤ i2.

The alignment may also contain gaps, which are the
indexes of the elements that have not been paired. We use
the number ‘0’ to represent a gap in the aligment, i.e.,

• (i, 0) ∈ A⇔ xi ∈ X ∧ /∃ j ∈ {1..m} • (i, j) ∈ A
• (0, j) ∈ A⇔ yj ∈ Y ∧ /∃ i ∈ {1..n} • (i, j) ∈ A
• (0, 0) /∈ A

In the following, GA will denote the set of gaps of
alignment A, i.e., GA = {(i, 0) ∈ A} ∪ {(0, j) ∈ A}.

Note that with this definition, A contains one (i, ∗) and
one (∗, j) element for each with 1 ≤ i ≤ n and 1 ≤ j ≤ m
(where the asterisk denotes an arbitrary value).

Definition 2.2 (Match and mismatch). Given an alignment
A, we say that a pair (i, j) ∈ A is a match if xi ≈ yj , and a
mismatch if xi /≈ yj .

Note that more than one alignment can be defined
between two sequences. For example, let us suppose that
X = {a, b, c, d}, Y = {a, b, d}, and Z = {a, h, c, d}. The
following alignments can be defined between them:

A1(X,Y) = {(1, 1), (2, 2), (3, 0), (4, 3)}
A2(X,Z) = {(1, 1), (2, 2), (3, 3), (4, 4)}
A3(X,Z) = {(1, 1), (2, 0), (0, 2), (3, 3), (4, 4)}
The first one contains three matches and one gap, the

second one contains three matches and one mismatch (2, 2),
and the third one contains three matches and two gaps.

Definition 2.3 (Paired and matched subsequences). We will
denote by XA and Y A the subsequences of X and Y that
are paired by an alignment A with other elements (i.e., the
non-gaps):

XA = {xi | xi ∈ X ∧ ∃j ∈ {1..m} • (i, j) ∈ A}
Y A = {yj | yj ∈ Y ∧ ∃i ∈ {1..n} • (i, j) ∈ A}.

Similarly, XA+ and Y A+ are the subsequences of XA and
Y A that are paired and matched by the alignment:

XA+ = {xi | xi ∈ X∧∃j ∈ {1..m}•(i, j) ∈ A∧xi ≈ yj}
Y A+ = {yj | yj ∈ Y ∧∃i ∈ {1..n}• (i, j) ∈ A∧xi ≈ yj}.

Then, the mismatched subsequences are defined as follows:
XA− = XA−XA+, and Y A− = Y A−Y A+. Finally, the gap
subsequences are those whose elements that are matched
with gaps: GAX = X −XA, and GAY = Y − Y A.

It is also important to pay attention to the sequences
of consecutive gaps (SCG) produced by the alignment. E.g.,
suppose that X = {a, b, c, d, e, f, g}, Y = {a,m, e, g} and
that the alignment A is defined as follows:

A = {(1, 1), (2, 0), (3, 0), (0, 2), (4, 0), (5, 3), (6, 0), (7, 4)}

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 4

In this case, only three points have been matched, namely
{(1, 1), (5, 3), (7, 4)}, and the rest have been identified as
gaps, i.e., GA = {(2, 0), (3, 0), (0, 2), (4, 0), (6, 0)}.

Then, we can identify two sequences of consecutive
gaps: S1 = {(2, 0), (3, 0), (0, 2), (4, 0)} and S2 = {(6, 0)},
with respective lengths of 4 and 1.

Note that other alternative alignments could have been
defined, e.g.:

A′ = {(1, 1), (2, 2), (3, 0), (4, 0), (5, 3), (6, 0), (7, 4)}
A′′ = {(1, 1), (2, 0), (3, 2), (4, 0), (5, 3), (6, 0), (7, 4)}
A′′′ = {(1, 1), (2, 0), (3, 0), (4, 2), (5, 3), (6, 0), (7, 4)}
They pair respectively element m in Y with b, c and d

in X , identifying them as mismatches. Their corresponding
SCGs are the following:

S′
1 = {(3, 0), (4, 0)}, S′

2 = {(6, 0)}, of lengths 2 and 1.
S′′
1 = {(2, 0)}, S′′

2 = {(4, 0)}, S′′
3 = {(6, 0)}, of length 1.

S′′′
1 = {(2, 0), (3, 0)}, S′′′

2 = {(6, 0)}, of lengths 2 and 1.
Thus, depending on how the alignment decides to pair

the elements and determines the corresponding gaps, the
length of the SCGs may vary. This is further illustrated in
the following example.

Suppose that X = {a, a, a, b, b, b, b, b} and Y = {a, b}. In
this case, depending on the strategy used by the alignment
algorithm to determine the gaps, we can have alignments
with rather different SCGs. For example, one alignment
matches the elements in the extremes of sequence X , ob-
taining only one SCG of length 6. Another alignment pairs
x4 with y1 and x5 with y2, obtaining two SCGs of lengths 2
and 4. An alternative alignment has three SCGs of lengths
1, 3 and 2. There are 12 possible alignments, each one with
resulting SCGs of different lengths.

The decision of whether we prefer more SCGs of shorter
length or fewer but longer SCGs depends on the strategy of
the alignment algorithm to open a gap or continue exploring
the chain. This is an important issue, which is decided by the
chosen affine gap penalty. This is discussed later in Sect. 2.2.3.

2.2.2 Trace alignment algorithms
To align traces we investigated existing solutions for se-
quence alignment. This is a well-known problem in other
disciplines, such as Bioinformatics, in which efficient al-
gorithms have been defined for aligning DNA and other
biological sequences.

There are two types of alignment algorithms: global
and local. Global alignment algorithms, like Needleman-
Wunsch [17] compare two similar sequences and find the
highest scoring alignment that includes all elements. In
contrast, local alignment algorithms, such as the Smith-
Waterman algorithm [18], on which BLAST is based, iden-
tify a list of the most similar subsequences between two
dissimilar sequences.

To develop our algorithm for behavioral trace alignment,
we used the classic global alignment algorithm for biological
sequences, Needleman-Wunsch (NDW) [17], complementing
it with a set of techniques borrowed from the BLAST algo-
rithm [19], which is broadly used for searching databases of
biological sequences for statistically significant similarities.
These algorithms are described next.
The Needleman-Wunsch Algorithm (NDW)
The Needleman-Wunsch algorithm [17] is a global alignment
algorithm that finds the optimal alignment of two sequences

of characters. It is implemented using dynamic program-
ming techniques, i.e., it breaks down the problem of com-
paring sequences into smaller problems (comparing sets of
subsequences) to find the optimal solution to the global
problem, and uses a similarity matrix to re-use calculations.
The algorithm assigns a score to every possible alignment,
and tries to find one of the possible alignments having the
highest score—there may be no unique optimal alignment.
To select the optimal one, the algorithm requires a scoring
scheme, which is defined in terms of rewards and penalties
assigned to the possible results when comparing two charac-
ters a and b, belonging to sequences X and Y , respectively.
These outcomes are:

• Match. The characters are the same.
• Mismatch. The characters are not the same but are

aligned, which is considered a mismatch.
• InsDel (or Gap). The characters are not the same and

the best alignment involves one letter paired to a gap
(represented by “–”) in the other sequence.

More precisely, if H is the maximum score matrix of the
alignment of sequences X and Y , the Bellman Equations for
computing this matrix recursively are as follows:

H[i, j] = max{H[i− 1, j] + g,

H[i, j − 1] + g,

H[i− 1, j − 1] + s(xi, yj)}

where the initial conditions are H[i, 0] = H[0, j] = 0; g is
the gap penalty; and s() is the function that compares two
elements, decides if there is a match or a mismatch, and
returns the corresponding reward.

There are different scoring schemas depending on how
we would like the alignment to work. For example, we
could use a reward of +1 for a Match; 0 for a Mismatch;
and a penalty of −1 for a Gap. This scheme gives priority to
mismatches over gaps, favoring solutions with fewer gaps.
Another schema uses a reward of +1 for matches and penal-
ties of −1 and −2 for mismatches and gaps, respectively.
This schema corresponds to the edit (Levenshtein) distance
between the two strings [20]. The lower the alignment score
the larger the edit distance.

BLAST
Basic Local Alignment Search Tool (BLAST) [19] is a pub-
licly available algorithm that compares biological sequences
against a library of sequences and provides a list of the most
similar ones given a similarity threshold. BLAST is based
on a local dynamic programming alignment algorithm for
biological sequences, the Smith-Waterman algorithm [18].

To avoid traversing the entire search space, BLAST uses
3 heuristic phases to refine potential high-scoring pairings.
1) Seeding. The user establishes a specific word length,
W . Then, the algorithm looks for alignments of that length
whose score is as large as a threshold T . These matches
are the seeds for possible alignments. During the seeding
phase, the algorithm uses low-complexity regions, which are
subsequences of little biological interest as they are common
in many other sequences, but which produce high scores.
To avoid seeding in such regions, they are soft-masked,
including them in the alignment in the extension phase but
not in the seeding phase.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 5

2) Extension. Once the search space is seeded, the algorithm
generates new alignments by extending the individual
seeds, increasing the word length progressively. To decide
when to stop extending, a threshold T decides how much
the alignment score can drop from the last maximum.
3) Evaluation. Once all the seeds are extended, the align-
ments are evaluated to decide which ones are statistically
significant. To determine this significance, the algorithm
establishes a score threshold S, which allows sorting align-
ments into low- and high-scoring.

2.2.3 Affine Gap
The result of an alignment algorithm may include gaps.
In the NDW algorithm, the penalty for a gap is set as a
constant value for all the alignments. This produces align-
ments with sequences in which gaps and matches alternate.
However, this approach may not work well when the ex-
pected alignments have long gaps instead of many small
sequences of alternating gaps and matches. For instance,
alignments with longer gaps are more meaningful when
trying to detect anomaly sequences [13]. To better model
this phenomenon, alignment algorithms such as BLAST
typically apply an evaluation gap penalty system named
affine gap, which imposes a higher penalty for opening a new
gap than for extending an existing one. If Pop is the penalty
for opening a gap, and Pex is the penalty for extending one,
the total penalty for opening a gap of length L would be
Pop + Pex ∗ (L− 1).

These penalties are incorporated into the scores of the
dynamic programming algorithm so that the optimal align-
ment is built considering them. The values for the penalties
of opening and extending a gap for BLAST are usually
obtained empirically. In general, the algorithm works well
when the penalty for opening a gap (Pop) is between 10 and
15 times the penalty for continuing it (Pex), cf. [19].

2.3 Distance Measures
Once we have aligned two traces, we can measure their
distance to evaluate how close or far apart they are. There
are two main groups of distance metrics: lock-step measures,
which compare the i-th point of one-time series with the i-
th point of the other; and elastic measures, able to compare
one-to-many points or even one-to-none [21].
1) Lock-step measures. Let X = {xi}ni=1 and Y = {yi}ni=1

be two already aligned traces, i.e., A = {(i, i)}ni=1. Then,
assuming that d(p, q) is a distance measure between a pair
of snapshots p and q (e.g., the Euclidean or the Manhattan
distance), we can compute the average distance between
the two traces, E(X,Y), and its sample standard deviation,
s(X,Y), as follows:

E(X,Y) = 1
n

∑n
i=1 d(xi, yi)

s(X,Y) =
√

1
n−1 (

∑n
i=1 d(xi, yi)

2 − n · E(X,Y)2)

2) Elastic measures. This type of measure allows con-
sidering one-to-many or one-to-none element matchings,
enabling more flexible alignments. One of the most repre-
sentative measures of this group is the Fréchet distance.

The Fréchet distance F (X,Y) between two already
aligned traces X and Y is defined as the infimum over
all reparametrizations χ and ψ of the maximum over all
t ∈ [0, 1] of the distance between X(χ(t)) and Y (ψ(t)). It is

generally explained through this example: Imagine a person
who walks from one end of a trajectory X to the other end,
being their position X(χ(t)); likewise, a dog walks from
one end of its trajectory Y to the other end, being its posi-
tion Y (ψ(t)), with the person holding the dog by a leash.
The Fréchet distance between both is the minimum leash
length needed to walk the dog following their trajectories.
Formally, assuming that d(X(χ(t)), Y (ψ(t))) is a distance
measure between individual positions, the Fréchet distance
is defined as follows:

F (X,Y) = inf
χ,ψ

max
t∈[0,1]

{
d(X(χ(t)), Y (ψ(t)))

}
Note that this measure computes the distance between

the two more distant snapshots of the trace. In contrast, the
Euclidean measures compute the average distance between
all the paired snapshots. Therefore, the Fréchet distance is
usually more appropriate in applications where a maximum
distance cannot be exceeded, e.g., a moving object that
cannot collide with surrounding obstacles. In contrast, lock-
step measures provide an overview of the alignment quality
and are less sensitive to outliers, making them appropriate
for applications where what really matters is the average
distance between the traces.

3 PROPOSAL

Our approach assesses behavior fidelity by comparing the
two twins’ behavioral traces. To compare the traces, we follow
a three-step process. First, we represent the system states as
snapshots (Section 3.2) and then define a comparison function
between individual snapshots capable of deciding whether
two snapshots are sufficiently similar or not (Section 3.3).
Second, we use a trace alignment algorithm (Section 3.4) to
align the corresponding equivalent states reached by the
two twins, given a certain similarity threshold (the so-
called maximum acceptable distance, MAD) defined for each
property of interest. Our aligning algorithm adapts the
NDW algorithm to work with behavioral traces and then
applies two optimization techniques borrowed from BLAST:
low-complexity regions and affine gaps. We analyze the
impact of these optimizations on the alignments initially
produced by the standard NDW algorithm, which did not
align relevant parts of the trace (cf. Section 3.4). Finally, we
measure the fidelity of the behavior of the two twins using
the level of alignment achieved (in terms of the percentage of
matched snapshots) and the distance between the aligned traces
(Section 3.5). The proposal is illustrated in this section with
the case study of the Mondragon elevator.

To apply our proposal, the problem should fulfill the
following requirements: a) the traces are expected to exhibit
the same synchronized behavior if the starting times were
the same; b) both systems should provide snapshots with
the same sample period—we work on the premise that two
identical behaviors coincide in 100% of the snapshots; for
this to be true, the snapshots must be taken at the same
time intervals; c) snapshots must include the behavior of
interest for the validation—the similarity between the twin
states can be assessed based on the difference between
the attribute values of the corresponding snapshots. Under
these circumstances, our approach provides a set of metrics
that determine the degree of fidelity between the systems,
indicating the specific parts of the traces that contain delays,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 6

inconsistencies, or differences in behavior. The approach
works offline, only pointing to delays or discrepancies in
the traces to evaluate if the twins would traverse the same
states simultaneously.

3.1 Running example: An elevator
To illustrate the problem and demonstrate our solution we
will use the case study of an elevator at the University of
Mondragon. The elevator travels between five floors: 0 to 4.
It is normally used by students who cannot use the stairs
or for transporting heavy loads. Recognizing its frequent
usage and its critical role, the University decided to optimize
its operation and maintenance to save energy and prevent
breakdowns.

To achieve this, the University decided to implement
a Digital Twin System (DTS) using the commercial sim-
ulator Elevate [22] as the digital replica. This simula-
tor can be configured with the different physical pa-
rameters of the specific elevator to emulate its behav-
ior, in particular, the acceleration during floor transitions.

Fig. 1: The elevator.

From this acceleration, it is possi-
ble to deduce the speed and de-
scent times to estimate the degra-
dation of the equipment and ver-
ify if the configuration is optimal.
However, they wonder whether
and to what extent the behavior
of the simulator is faithful to that
of the physical system.

The objective of our proposal,
in this case, is to assess whether
the acceleration sequences of the
simulator are sufficiently faithful
to undertake the role of a DT, es-
pecially in terms of user comfort

and the absence of abrupt movements. The DT acceleration
values will be compared with those of the real system for
specific operating sequences, which are measured using an
accelerometer while performing the same sequences.

3.2 System representation
To apply the sequence alignment algorithm to behavioral
information, we need a discrete representation of the sys-
tem’s behavior over time. To discretize such information,
observations of the system state are captured periodically,
often referred to as sampling, as if a film was divided in its
photograms. This representation is adapted to the required
level of abstraction, only including in the snapshots the
information about the properties of interest. For example,
Figure 2 shows two snapshots of each twin. In this exam-
ple, snapshots only include the elevator’s acceleration (the
property of interest), and the timestamp of the moment the
snapshot was taken.

Figure 3 shows the sequences of snapshot values, i.e.,
the acceleration data, obtained from the real system (the
PT, top) and from the Elevate simulator (the DT, bottom)
for a particular scenario, which we have called (4-0-4):
The elevator starts at floor 4, goes down to floor 0 (from
timestamp 5.8 to 24.1 in the DT), stops, and goes up again
to floor 4 (from timestamp 44.7 to 63 in the DT). We see
four peaks divided into two groups. The first group, with

PT_LiftSnapshot1:PT_LiftSnapshot

timestamp=62.079
acc=0

PT_LiftSnapshot2:PT_LiftSnapshot

timestamp=62.574
acc=0.004905

DT_LiftSnapshot1:DT_LiftSnapshot

timestamp=62.0
acc=-0.64857

DT_LiftSnapshot2:DT_LiftSnapshot

timestamp=62.5
acc=-0.14857

Fig. 2: Sample elevator snapshots from the PT and the DT.

the first two peaks, represents the acceleration during the
descent of the elevator from floor 4 to 0. The first peak shows
the negative acceleration during descent, while the second
represents the positive acceleration during braking upon
reaching the floor. Similarly, the next two peaks represent
the acceleration during ascent.

These acceleration and deceleration peaks for floor tran-
sitions are remarkably similar between the simulation and
the real system, disregarding the accelerometer noise near
zero when the elevator speed is constant. However, there is
one aspect of the real system that is absent in the simulation:
Every time the elevator brakes in either direction, an addi-
tional and much smaller acceleration is added to smooth out
the elevator’s stop and improve the user experience. This
pattern is specific to this particular elevator model and can
be seen as a small peak following the acceleration change
due to the braking in the same direction.

The graphics also show a small delay between the DT
and the PT. This is because the PT was activated by hand,
while the simulation was regularly run. Hence, there is
a need to align the traces using similarity functions and
not just timestamps since, on many occasions, we cannot
assume that the two systems are running in unison, as is the
case here.

Finally, note that the accuracy of the discrete represen-
tation of the trace depends on the frequency with which
snapshots are taken. A shorter snapshot period results in a
more accurate trace. However, sampling at a faster speed
may produce too many identical snapshots, which provides
no new information, increases storage requirements, and
slows down analysis algorithms. In this case, we took 696
snapshots, approximately 11 per second.

We conducted ten executions of this scenario to analyze
how variations could impact the alignments and account
for uncertainties and noise in the behavior. Specifically, we
will reference execution 04 and execution 01 in this paper
to illustrate some of the algorithm’s properties. The analysis
of all scenarios and the ten executions for scenario (4-0-4)
are described in detail in the technical report of this case
study [23].

3.3 Comparison Function

The first step in aligning the traces is the definition of a
comparison function capable of comparing two snapshots
of the system. Comparison functions in Bioinformatics and
other disciplines that align sequences are simple because the
sequences they compare are mainly characters. However,
snapshots can be complex structures composed of hetero-
geneous records because they are intended to represent the
system states.

Algorithm 1 describes the similarity function “S()” be-
tween two snapshots sA and sB . We suppose that the two
snapshots are composed of the same k typed attributes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 7

 −0.5

 0

 0.5

 0 10 20 30 40 50 60 70

 −0.5

 0

 0.5

DT Trajectory

PT Trajectory

timestamp(s)

a
c
c
e
l(

m
/s

2
)

a
c
c
e
l(

m
/s

2
)

Fig. 3: Elevator traces of the PT and DT from floor 4 to 0,
and to 4 again. Execution 04.

{a1, ..., ak}. The function returns a real number in the range
[0..1] that indicates the similarity score between the two
snapshots, where 1 means they are equal and 0 means that
they are different. The difference between each attribute is
computed depending on its type. For numerical values, we
use a real number that represents the Maximum Acceptable
Distance (MAD) between two values of one attribute to be
considered “similar”. If the difference exceeds the MAD
value, we consider them different and assign a reward of
0. Otherwise, the reward gradually increases as the differ-
ence between values decreases, as shown in line 6 of the
algorithm. The reward is 1 if they are equal. In the case of
Boolean values, a reward of 1 is given if the values are the
same and 0 if they are different. For enumerated or string
attributes, we could do the same or use the comparison
operations defined in [24] (namely, uEquals()) to calculate
a similarity value between 0 and 1.

Lines 24-28 implement the treatment of the low-
complexity regions, as explained later in Section 3.4. We
identify those trace elements that are considered to be
within a low-complexity region using function lowComp(),
and then reduce the impact of these elements on the overall
score by decreasing their score using the constant LCAW
(e.g., 0.005). If one of the two snapshots belongs to a low-
complexity region, the reward is multiplied by LCAW (line
27); and if both belong, the reward is halved (line 25).

This algorithm evaluates the reward for each attribute
and computes the average, assuming that all attributes have
the same weight. Of course, alternative algorithms could be
defined if necessary, either by assigning different weights
to the attributes or, for example, by using the minimum of
the similarities instead of their average. Furthermore, not all
attributes need to be considered in the similarity function,
only those relevant to the comparison depending on the
purpose of the DT. To restrict the timeframe for matching
snapshots, we could consider the timestamp attribute in
the similarity function and specify a MAD value. However,
we do not impose this restriction in any of the examples
presented to enable the detection of similar behavior despite
any potential delays. In the Elevator case study, we are es-
pecially interested in the acceleration value. Considering the
snapshots in Fig. 2, if we compare the first PT_LiftSnaphot
with the two DT snapshots using a MAD of 0.4 m/s2, we
obtain a similarity value of 0 and 0.63, resp.
3.4 Trace alignment algorithm
Our snapshot alignment algorithm adapts the NDW algo-
rithm to work with behavioral traces, and it then applies

Algorithm 1 Similarity function between two snapshots

1: i← 1; result← 0
2: while i ≤ k do
3: if isNumerical(sA.ai) then
4: dif ← abs(sA.ai − sB .ai)
5: if dif < MAD then
6: result← result + (1− dif

MAD)
7: else
8: result← 0 ▷ Mismatch if MAD exceeded
9: break

10: end if
11: end if
12: if isBoolean(sA.ai) ∧ sA.ai = sB .ai then
13: result← result + 1
14: else
15: result← 0
16: break
17: end if
18: if isString(sA.ai)∧equals(sA.ai, sB .ai) > MAD then
19: result← result + equals(sA.ai, sB .ai)
20: else
21: result← 0
22: break
23: end if
24: if lowComp(sA.ai) ∧ lowComp(sB .ai) then
25: result← result ∗ LCAW/2
26: else if lowComp(sA.ai) ∨ lowComp(sB .ai) then
27: result← result ∗ LCAW
28: end if
29: i← i+ 1
30: end while
31: return result/k

two of the BLAST optimization techniques: (a) the use of
low-complexity regions to avoid initiating alignments in those
areas and focus on more characteristic regions of the protein
sequence; and (b) the affine gap techniques for deciding when
the algorithm should insert a gap or a mismatch preventing
the excessive alternation between gaps and matches and
obtaining more relevant alignments.

The use of affine gaps requires keeping track of the
possibilities of opening or continuing a gap in either of
the sequences X and Y for every pair of characters. This
introduces the need for three additional matrices to the
score matrix H of the NDW algorithm: one per snapshot
sequence for opening or continuing a gap (HX and HY)
and one to evaluate the matches and mismatches (HM).
More precisely, if H is the maximum score matrix of the
alignment of sequences X and Y , the Bellman equations for
computing this matrix recursively are as follows:

H[i, j] = max{HM [i, j], HX [i, j], HY [i, j]}
HM [i, j] = H[i−1, j−1] + S(xi, yj)
HX [i, j] = max{H[i−1, j]−Pop−Pex, HX [i−1, j]−Pex}
HY [i, j] = max{H[i−1, j]−Pop−Pex, HY [i−1, j]−Pex}

where S() is the similarity function described in the previ-
ous section, and the initial conditions are as follows:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 8

H[i, 0] = H[0, j] = 0

HM [i, 0] = HM [0, j] = −∞
HX [i, 0] = HY [0, j] = Pop + Pex

HX [0, j] = HY [i, 0] = −∞

Basically, the algorithm is the same as the NDW algo-
rithm [17], but incorporates two main changes. First, it uses
three additional matrices as described above to implement
the affine gap mechanism, providing it uses the similar-
ity score function S() to compare the trace elements (see
Algorithm 1) instead of the scoring matrices to compare
characters. Second, as described in the previous section, the
similarity function deals with the low-complexity regions
and adapts their scores accordingly. The extension of the
algorithm still guarantees Bellman’s Principle of Optimality
because we respect the optimal substructure, meaning that
we only incorporate a comparison function between two
elements that returns the level of similarity solely based
on those elements, as the original approach. This enables
the solution composition and the application of dynamic
programming, ensuring the optimal solution, which max-
imizes the similarity between elements. Note that the op-
timal alignment may not always have the lowest distance
between two traces or have the highest fidelity metrics. In
this context, the optimal alignment is the one that returns
the highest score based on the comparison function between
pairs of snapshots and the scoring scheme. A detailed
description of the algorithm and the full demonstration are
available in the companion technical report [25]

Our algorithm has four parameters that allow customiz-
ing its behavior to the particular system of interest: MAD,
gap opening penalty (Pop), gap extension penalty (Pex),
and LCAW. MAD and LCAW are used by the similarity
function S(), and the other two are used in the algorithm
that computes the alignment. These four parameters are
described next.

1) MAD values. First, we need to define the aforemen-
tioned MAD values for each attribute of the snapshot. Each
MAD value determines the maximum distance between two
values of the same attribute to be considered similar, i.e.,
so that the states they represent can be matched because
they are “sufficiently similar.” Normally, they are defined
proportionally (our experiments have shown 2 to 3 times) to
the accuracy of the measuring instrument used to obtain the
attribute values or to the allowed tolerance of the physical
property represented by the attribute.

In the elevator case study, we focus on only one at-
tribute, the acceleration, and then we took a MAD value
of 0.15 m/s2 (note that the accuracy of the accelerometer
is 0.05 m/s2, i.e., the MAD value is 3 times the accuracy).
A very small MAD normally produces alignments with a
low number of matched pairs but with a small distance
between the traces (recall that MAD value establishes an
upper bound for the Fréchet distance FD). On the other
hand, alignments with very high MAD values can produce
meaningless results by matching inconsistent values.

2) Scoring schema values (Pop, Pex). We also need to
decide the scoring scheme used to select the optimal values
of the alignment: Match, Mistmatch, Gap opening penalty
(Pop), and Gap extension penalty (Pex).

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5

Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)

(a) Base (No LCAW, No Affine Gap)

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5

Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)

(b) LCAW (No Affine, LCAW)

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5

Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)

(c) Affine Gap + LCAW
Fig. 4: Alignments for Scenario (4-0-4). Execution 04.
MAD: 0.15m/s2

Instead of being a constant number (as when comparing
character sequences with the NDW or BLAST algorithms),
we decided that the reward of a Match will depend on
how similar the two snapshots to compare are. Namely, the
reward will be a number in the range (0, 1] that captures
the similarity between the attribute values, as computed by
the similarity function. The score for a Mismatch will be 0.
This occurs when the two snapshots are farther away from
the MAD value, but the algorithm considers they should be
paired to obtain an optimal alignment. The opening (Pop)
and extending (Pex) gap scores will be negative numbers,
representing penalties. The values of these two parameters
are usually set based on tuning experiments. We realized
that, in the three systems that we analyzed, the alignment
algorithm works well when the opening gap cost Pop is in
the range [−0.5,−0.1], i.e., between 10% and 50% of the
perfect Match reward. Parameter changes within this range
of values are not significant, as we shall later see.

3) Low-complexity area weight (LCAW). Information
theory [26] quantifies information using the concept of en-
tropy, defined as the amount of uncertainty present in the
possible outcomes of a random variable. The entropy is
maximum when the probabilities of all possible values of
the variable are equal. As the probability of one of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 9

values increases over the others, the entropy decreases. In
the elevator example, the regions with lower entropy are
the ones at constant speed, i.e., the ones at zero acceleration,
which cover most of the trace and contain noisy values
around zero. These areas contain less information and do
not contribute as much to characterizing the behavior of
the elevator compared to the curves. Alignment algorithms
such as BLAST aim to maximize the similarity between
aligned pairs. However, common low-entropy regions re-
turn high similarity scores, shifting the attention from more
characteristic subsequences. To address this issue, we mask
these snapshots by reducing their reward to refocus the
algorithm on aligning snapshots in other regions. In the
case of the elevator, these regions can be easily identified
because their values are lower than the accelerator accuracy
(0.05 m/s2), i.e., they are indistinguishable from 0. To mask
them, we define the Low-complexity area weight (LCAW). This
is the weight that we need to assign to values in the low-
complexity areas to reduce their influence. This number is
the product of two factors: the percentage of snapshots that
are relevant to the behavior of interest (r), and the influence
weight (s) we want to assign to them. In the elevator case
study, its traces showed that it was changing speed only 10%
of the time, so r = 0.1. We also considered that s = 1/20,
meaning that the weight of non-relevant snapshots was
1/20 of the weight of relevant ones. Therefore, we set
LCAW= 0.005.

To show the effect of taking into account the low-
complexity areas, let us consider the alignment of the traces
depicted in Figure 3 using MAD 0.15 without considering
low-complexity areas. The resulting alignment is presented
in Figure 4a. All four acceleration peaks are expected to be
aligned as they represent the same behavior. However, we
observe that the first two acceleration curves, which indicate
the movement from the fourth floor to the ground floor, are
not aligned. This misalignment, however, is not observed in
the other two acceleration curves, which are aligned with
their respective counterparts.

The problem is with the algorithm’s reward scheme. The
similarity function returns a value in the range (0, 1] by
comparing two snapshots and returning a higher value for
higher similarity. In this example, the reward scheme favors
alignments in zero-acceleration regions rather than those in
acceleration curves. For instance, consider a DT acceleration
value of 0 m/s2 and a PT noised value of 0.005 m/s2

from the zero-acceleration area. Their difference is 0.005,
normalized with respect to the MAD at 0.15 m/s2. The
reward is 1 − (0.005/0.15) = 0.97. In contrast, if we exam-
ine two potentially similar snapshots from the acceleration
curves, 0.7 m/s2, and 0.76 m/s2, their difference is 0.06,
so we obtain the following reward: 1 − (0.06/0.15) = 0.6.
The algorithm consistently prioritizes alignment in the zero-
acceleration areas to maximize the alignment final score.

To mitigate this issue and guide the algorithm into
considering the values in the acceleration curves over the
zero-acceleration regions, we apply the LCAW. Subfigure 4b
shows the use of low-complexity areas. This way, we force
the algorithm to focus on the areas that characterize the
relevant behavior, resulting in a more significant alignment.
In this alignment, snapshots whose acceleration is lower
than 0.05 m/s2 are considered low-complexity areas, with

LCAW= 0.005.
To see the effect of applying affine gap to an alignment, we

can compare the Subfigures 4b and 4c. In the latter, we can
observe that the gaps in the first 20 timestamps are grouped
together instead of alternating. This approach enhances the
interpretation of the alignment, making it easier for us to
identify the initial delay between the traces. This delay can
be measured by estimating the number of consecutive gaps
at the beginning of the trace and then multiplying it by the
snapshot sampling rate.

Combining LCAW and affine gap provides two key ben-
efits: a) more accurate alignments by forcing the alignment
of the behaviors of interest, and b) longer, more contextually
relevant gap groups for a better interpretation of the results.

3.5 Fidelity metrics
After aligning the twins’ traces, we need to determine how
accurately the DT traces match those of the PT. To do this,
we have defined three measures to assess the quality of the
alignment: the percentage of matched snapshots and two
different distances between the traces.

The first metric is the Percentage of matched snapshots
(%MS) between the PT and DT traces, which is defined as:
%MS+

A = #XA+/max(#X,#Y)∗100. The more matched
snapshots, the closer the two trajectories are. Furthermore,
if the alignment is poor, the results of the distance metrics
become meaningless.

To measure the distance between the two trajectories we
can use both the Fréchet and Euclidean distances, as described
in Section 2.3. The former calculates the maximum distance
of all matched snapshots, while the latter returns the av-
erage distance between them. The snapshots in the low-
complexity areas are excluded to avoid artificially lowering
the average distance.

If the PT and DT traces are identical, all snapshots are
matched (%MS=1) and the two distances are 0. This means
that both twins have gone through the same states.

Note that the MAD value has a key influence in these
three metrics: the larger the MAD, the greater the number
of matched snapshots. However, a high MAD does not only
increase the two distances (since the MAD value establishes
an upper bound for the Fréchet distance), but it can lead to
incorrect matches (cf. Section 3.4). This is why we always
have to find the right balance between the MAD value, the
number of matched snapshots, and the distances between
the traces. The selection of the MAD value and the rest of
the algorithm parameters is discussed below in Section 4.

Other metrics of interest also include the Percentage of
mismatches, %m−

A = #XA−/max(#X,#Y) ∗ 100, and the
Percentage of gaps, %mG

A = 100− (%m+
A(X) +%m−

A(X)). A
larger percentage of gaps than mismatches may indicate a
delay between the behaviors, whereas a high percentage of
mismatches could mean a temporary deviation of the two
behaviors.

Further relevant measures take into account the Number
of sequences of consecutive gaps and the Average length of the
sequences of consecutive gaps. These metrics help analyze the
distribution of gaps in the trace and provide insights into
the potential differences between them.

For example, if there is a small number of very long gaps,
it may indicate a delay in the behavior of one of the twins.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 10

Similarly, if there are many clusters of very short gaps, it
may be a symptom of stuttering behavior in one of them.
The application of affine gap increases the length of the gaps
when possible and helps in the detection of these symptoms.
The precise definitions of all these metrics can be found in
the technical report available on the companion website [27],
[28].

To analyze the impact of applying the BLAST optimiza-
tion techniques on the fidelity metrics, we have aggregated
the statistics of the ten executions of scenario (4-0-4) as
shown in Table 1. We found that the application of LCAW re-
duces the %MS but does not considerably affect the distance
metrics. This is because to match the high-relevant areas, we
need to include gaps in the more abundant zero-acceleration
areas, which reduces the number of matches but ultimately
results in more accurate alignments.

The statistics in Table 1 indicate that the usage of affine
gap has a minor effect on the fidelity metrics (%MS, FD, ED),
but it does have a significant impact on the gap distribution.
The average length of gaps increases from 5 to 11 without
any increase in the total number of gaps. Additionally, these
gaps are now consolidated into 10 groups instead of the
previous 20+, which reduces the non-aligned regions in
the alignment by half. This results in a clearer and more
straightforward interpretation of the alignment. These find-
ings match with the benefits introduced at the end of the
previous section. A more detailed statistical analysis of the
effects of both optimization techniques is available in the
technical report [25].

TABLE 1: Average fidelity metrics for the ten executions
scenario (4-0-4).

Algorithm Fidelity Gaps
Variant FD ED %MS % length # #groups

Base 0.126 0.022 93.43 6.11 3.59 82 24
LCAW 0.126 0.023 91.79 7.78 4.79 105 22
Affine 0.127 0.023 93.48 5.58 7.93 75 10

LCAW + Affine 0.129 0.024 91.88 7.69 11.74 104 9

4 PARAMETER TUNING

We have already mentioned that the MAD value signifi-
cantly influences the percentage of matched snapshots and
the distances between the DT and PT traces. Another aspect
to analyze is the possible influence of other parameters of
the algorithm, namely gap opening and extension penalties,
on the three fidelity metrics. This section discusses the effect
of these parameters on fidelity and how they can be used to
decide whether the DT is faithful to the PT or not.

In order to showcase the use of our algorithm with a
more favorable alignment, we will be using execution 01
instead of execution 04 for the remaining part of the Ele-
vator example. This alignment exhibits similar behavior in
terms of acceleration curves but does not include the initial
delay. By eliminating the initial delay, we can focus on the
similarity of the acceleration curves and the synchronization
between the movements of both elevators.

4.1 Gap tuning
To understand the effect of the algorithm parameters, we
conducted an experiment with different values for MAD,

0.10

0.15

0.20

M
AD

 a
cc

el
(m

/s
2)

3

2

1

Pe
na

lty
 O

pe
n

Ga
p

2

1

0

Pe
na

lty
 E

xt
en

d
Ga

p

80

85

90

%
m

at
ch

ed
 sn

ap
sh

ot
s

0.10

0.12

0.14

Fr
èc

he
t D

ist
an

ce

0 100 200 300 400 500
#Alignments

0.024

0.026

0.028

Eu
cli

de
an

 D
ist

an
ce

Fig. 5: Results for the 504 alignments of scenario (4-0-4)
sorted by increasing %MS in the X-axis. From top to bottom:
MAD; Pop; Pex; %MS; Fréchet distance FD and Euclidean
distance ED.
Pop and Pex, and computed the resulting metrics. MAD
values ranged between 0.1 and 0.22 with increments of 0.04.
Pop values ranged between −3.0 and −0.5 with increments
of 0.5. Finally, Pex values ranged between−2.0 and 0.0 with
increments of 0.1. This results in 504 alignments.

Figure 5 shows the results for the 504 alignments of
scenario (4-0-4) sorted by increasing percentage of matched
snapshots (%MS) in the X-axis. The figure shows, from top
to bottom, the values of MAD, Pop, Pex, %MS, Fréchet
distance (FD), and Euclidean distance (ED). There is a clear
breakpoint where the number of matched snapshots grows,
which divides the results into two areas (the right one
shaded in pink). These plots show that what really makes
the difference is the value of the penalty Pex. As long as
Pex is between −0.5 and 0.0, the number of matched points
is greater than 89%. Within that range, the MAD value is
correlated with the two distances. However, the correlation
is not linear. This is because small variations of the MAD
value may cause the alignments to change: an increase in
MAD may mean that new pairs of snapshots are included in
the alignment. We can see that this has a very small effect on
the Euclidean distance (that always stays between 0.024 and
0.026), but it can affect the Fréchet distance. Interestingly,
the value of penalty Pop does not play a significant role
when it maintains in the range [−3, 0]. Therefore, our assign-
ment (Pop, Pex) = (−1.0,−0.1) produces stable alignments
on which the distance metrics can be used.
4.2 MAD effect
In Section 3.5, we defined three metrics to assess the quality
of the alignment: the distances between the traces (Fréchet

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 11

and Euclidean) and the percentage of matched snapshots
(%MS). Intuitively, the smaller the distances and the larger
the %MS, the closer the traces will be. In fact, for a fully
faithful DT, the distances are 0.0, and %MS is 1.0.

As mentioned above, these three metrics depend on the
MAD value, which should be chosen in order to (1) maxi-
mize the percentage of matched snapshots and (2) minimize
Fréchet and Euclidean distances (if not both, at least one of
them depending on the particular problem).

Note that the MAD value cannot be carelessly chosen:
it must be large enough to identify similar snapshots ad-
equately but small enough to produce meaningful align-
ments.

As discussed in Section 3.4, the MAD value normally
should be around 2 or 3 times the accuracy of the measuring
instrument used to obtain the corresponding attribute value.
In the Elevator case study, where we have one single at-
tribute (the acceleration) and the accuracy of the accelerom-
eter is 0.05 m/s2, we obtain a MAD value of 0.15. Using
this value, the fidelity metrics obtained for the resulting
alignment are %MS=0.94, FD=0.12, and ED=0.049.

To summarize, given the traces of two twins, the first
step is to set the values for the alignment algorithm param-
eters, namely Pop, Pex, LCAW, and MAD. We have seen how
the first two can be set to−1.0 and−0.1, respectively; this is
consistent with the traditional BLAST algorithm recommen-
dations for these values. The LCAW parameter determines
the weight with which we want to penalize snapshots in
low-complexity regions (in our case study, those were the
ones whose acceleration was less than the accuracy of the
measurement instrument, 0.05 m/s2). LCAW was set to
0.005, see Section 3.4. Finally, the MAD value was set to
three times the accuracy of the measurement instrument
used to measure the attribute of interest: 0.15 in this case.

5 ASSESSING FIDELITY

This section presents how the above metrics can be used to
define indicators of the fidelity of a DT with respect to its PT.
In addition, we show how these metrics can be employed to
compare the fidelity of various DTs and discuss the impact
of the stochastic variability of different twin executions on
the fidelity metrics and indicators.

5.1 Fidelity indicators
The degree of fidelity of a DT with respect to a PT can be
decided depending on the values of the three metrics. But
first of all, it is essential to decide whether the alignment is
sufficient to make the measurements meaningful.

• For example, if the percentage of matched snapshots
(%MS) is below 90% (±2%), we could conclude
that the traces could not be properly aligned, and
therefore no faithful behavior can be expected.

• If %MS is between 90% and 95% (±2%), the align-
ment is low, but the distance metrics will make sense
and can be considered. In general, the acceptable dis-
tance between the traces is application-dependent,
and whether it is the Fréchet or the Euclidean dis-
tance that matters.

• An alignment with %MS above 95% (±2%) could be
generally considered good enough, and the degree of
fidelity depends on the distance between the traces.

 0

 50

 100

 0

 0.1

 0.2

 0.3

 0 0.05 0.1 0.15 0.2 0.25 0.3
 0

 0.01

 0.02

 0.03

 0.04

High-fidelity

Low-fidelity

MAD (m/s2)

%
M

S
F
D

 (
m

/s
2

)
E
D

 (
m

/s
2

)

Fig. 6: Fidelity comparison of two DTs for scenario (4-0-4).
Execution 01.

Of course, these thresholds depend on the application
and must be determined by the end user. In our examples
we have used those commonly used in general engineer-
ing environments [29]. Note as well that we are assuming
a maximum permissible error (MPE) of 2% [29] for the
assessment of %MS, since most times thresholds are not
completely accurate.

In execution 01, we obtain an alignment able to match
94% of the snapshots (%MS=0.94), a Fréchet distance
FD=0.12, and a Euclidean distance of ED=0.05. The per-
centage of matched snapshots is sufficient to consider the
distance metrics. Then, the Euclidean distance, which cap-
tures the average difference between matched snapshots,
is below the accuracy of the measuring instrument, so we
can conclude that it is acceptable. However, the decision on
whether the Fréchet distance (0.12 m/s2) is acceptable or
not also depends on the application.

5.2 Multi-fidelity digital twins
Using more than one DT of the same PT is an emergent tech-
nique called multi-fidelity digital twins [14], borrowed from
the modeling and simulation community [30]. It addresses
the problem that occurs when very accurate simulations
are computationally too expensive, and a lower resolution
model can provide “accurate enough” simulations. We can
then have several digital twins, each of a different res-
olution, and use the most appropriate results when the
very accurate simulations are computationally prohibitive.
Deciding whether the degree of fidelity of a model is good
enough or not becomes a critical issue in this context, and
this is precisely the motivation of our work.

To illustrate how our approach can be used to compare
the fidelity of two DTs of the same PT, we developed a more
abstract and lower-resolution model for the elevator case
study in UML. We employed the USE tool [31], which allows
executing the UML specifications [32]. The USE model of the
Elevator is available from [27], [28] and employs a simple
algorithm to compute the acceleration, in contrast to the
more elaborated algorithm used by the Elevate simulator.

Figure 6 displays the values of our three metrics (%MS,
FD, and ED) for different values of MAD in the range
[0.02, 0.3]. We can see how the commercial simulator, in-
cluded in the legend as “High-fidelity", obtains larger %MS
and lower distance values than the USE model. In this case,
given that the alignment of the low-resolution USE model
does not even reach 90% of matched snapshots, we can
conclude that it does not represent a faithful twin of the
physical system.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 12

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5
Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5
Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)

Fig. 7: Alignments for the low-resolution model with MAD
values 0.12 (top) and 0.15 (bottom).

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5

Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)

Fig. 8: Alignment of the high-resolution model for
MAD=0.12.

These types of plots are also very useful because they
clearly allow us to decide the MAD value that obtains
the lower distance with better %MS. As the MAD value
increases, both %MS and the two distances also increase. For
the high-resolution model, these three values reach a plateau
when MAD is 0.15m/s2. After this point, if we increase the
MAD, the %MS does not change, i.e., the alignment stabi-
lizes. All three values reach a plateau in the high-resolution
model because the algorithm is able to align almost 90% of
the points and, as we increase the MAD, there are no more
snapshots that can be included in the alignments—mostly
because these are gaps needed to perform the alignment,
due to a delay between the traces. Therefore, the values of
the distances will not change. This is not the case for the
low-resolution model, whose values keep worsening as the
MAD value increases.

Figure 6 also shows that there is no difference between
the distances of the low- and high-resolution models when
the MAD is below 0.12. However, the %MS of the USE
model is lower. In fact, in order to have a meaningful fidelity
indicator, it is essential to ensure a minimum %MS. To
graphically illustrate this issue, Figure 7 shows the align-
ments obtained for the low-resolution model corresponding
to MAD values 0.12 and 0.15. Their %MS values are, respec-

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5

Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)
 (

m
m

)

Fig. 9: Alignment of the DT scenario (4-0-4) with an anoma-
lous PT trace MAD=0.15.

tively, 0.78 and 0.83. In the first alignment, the acceleration
curves were not included, as they were not emulated with
the required precision. In the second figure, we were finally
able to align points of the behavior of interest. However, the
%MS still did not reach 0.90. Based on the alignments, to
improve this model, we need to improve the precision of
the acceleration curves.

Something that Figure 6 also shows is that the three
fidelity metrics already obtain acceptable values in the case
of the High-fidelity model: for a MAD of 0.12, we obtain
%MS=0.91, FD=0.10, and ED=0.024. So, in this case, a MAD
value about 2 times the accuracy of the measurement instru-
ment can be “good enough.” Figure 8 shows the alignment
obtained for MAD=0.12, with 91% of the snapshots matched
(excluding low-complexity areas).

The additional metrics, namely the number of individual
gaps and the mean length of the gaps, are also useful. For
instance, in the alignment displayed in Figure 8, there are 14
sequences of gaps, with a total of 114 gaps. The mean length
of these sequences is 8. Since the sampling period is 0.1, this
means that the average delay is almost a second in the trace
execution. This is consistent with the behavior of DT, which
lags behind PT, as shown in the figures.
5.2.1 Additional synthetic scenarios
To showcase the potential of the approach, we performed
analysis for two additional synthetic scenarios created by
manipulating the actual measurements of the elevator sce-
nario (4-0-4). These examples demonstrate how our algo-
rithm identifies anomalous and erratic behavior and how it
impacts the performance metrics.
Acceleration Anomalies in the PT. We have incorporated
a set of acceleration patterns into the PT trace, which the
algorithm classifies as mismatched and/or gaps, effectively
identifying and locating the anomalous behavior within the
trace, presented in Figure 9. The original traces’ fidelity
metrics were %MS 94.2, FD 0.12, and ED 0.05. However,
after including the anomalies, the %MS reduced to 75.07,
while the distances remained the same. This is because the
newly added snapshots are not aligned, and only matched
snapshots are considered in the distance metrics.
Random noise in the working range. In this experiment, we
generated a new trace consisting of random noise in the ac-
celeration working range. However, when we tried to align
this trace with the original sequence, we observed an alter-
ation in the alignments, making it impossible to properly
match any sequences. Figure 10 shows the misalignment of
the random noise trace. In the original scenario, the fidelity

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 13

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5

Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)
 (

m
m

)

Fig. 10: Alignment of the DT scenario (4-0-4) with random
noise in the working range. MAD=0.15.

metrics for this MAD were as follows: %MS 94.2, FD 0.12,
and ED 0.05. However, when we tried aligning this random
noise trace, the %MS dropped to 22.04, with a mismatch
percentage of 76.2%. Additionally, the distances between
the aligned sequences increased, with FD rising to 0.15 and
ED to 0.07. This experiment shows that our algorithm and
metrics can effectively distinguish a proper alignment from
a random sequence, as demonstrated by the differences in
the fidelity metrics.

All the experiments conducted and the statistical results
of their analysis are available in the companion technical
report for the elevator [23].

6 EVALUATION

The evaluation is divided into two subsections. In the first
subsection, we consider a set of three additional CPSs to
showcase and discuss further aspects of our proposal. This
includes comparing models of the same system or consid-
ering multiple attributes in the comparison function. This
part of the evaluation aims to demonstrate our proposal’s
applicability and feasibility in other examples and illustrates
how to adapt it to other systems. The second subsection
focuses on quantitative analysis. We will start by analyzing
the proposal against related proposals in the literature and
discussing the differences. Finally, we will measure the time
complexity and scalability of our proposal and the others
under consideration.

6.1 Demonstration Cases

In this subsection, we showcase the application of the al-
gorithm for three additional CPSs to illustrate and discuss
further aspects of our proposal, which complement those
shown in the running example. First, we introduce the
example of an incubator system for which we have two
models with different computational costs and accuracy. We
want to evaluate these models’ fidelity to decide which is
the best to use in two different working scenarios. Next, we
analyze a robotic arm that illustrates the use of our proposal
when the snapshots contain several parameters (the robot
servos). Furthermore, in this case, our starting point is
the model of the system with the required behavior, and
we want to test how faithfully a particular robot behaves
according to it. Finally, we developed an additional case
study demonstrating how our approach supports traces
with Boolean and enumerated types.

6.1.1 Incubator: Compare models

Description

A research team from the Aarhus University in Denmark
designed and built the DTS for an incubator [33], [34].
The incubator consists of an insulated box with a heating
device and a fan. The controller reads the values from the
temperature sensors and actuates on the fan and the heating
device, turning them on and off in order to maintain a
stable temperature inside the box between 30 and 35 degrees
Celsius. For this purpose, the controller uses a heating
pattern in which it first activates the heating for a certain
number of seconds (Heating time, Ht) and stops it for a
further time (Heating gap, Hg). The controller then checks
whether the temperature has reached the upper limit. If not,
it reactivates the heating pattern. Two scenarios following
different strategies are considered: one uses a short pattern
(Ht: 3 s, Hg: 2 s), and another a long one (Ht: 30 s, Hg: 20 s).

Two simulation models were developed to serve as DTs
for the incubator, one with two parameters (2-P model) and
one with four (4-P model). Their purpose was to accurately
capture the non-linear behavior and transient changes dur-
ing temperature fluctuations. The 2-P model is a simple
linear model that is computationally efficient and provides
approximate predictions for the incubator temperature. The
4-P model is a non-linear model that captures more ac-
curately the system’s transient behavior but at a higher
computational cost. Our goal is to measure the fidelity of
these two DTs and to check how accurate they really are.

Fidelity assessment

The incubator utilizes two DHT22 sensors [35] for mea-
suring the temperature inside the box. According to their
datasheets, these sensors have an accuracy of ±0.5◦C .
Therefore, to ensure a sufficient level of fidelity, the MAD
should fall within the range of 1 to 1.5 ºC (cf. Section 4.2).

In the first scenario, Ht3-Hg2, the controller activates and
deactivates the heater at very short intervals. This results in
a heating pattern where the two-second cooling interval is
hardly noticeable. The challenge for the models lies in the
transition from the heating state to the cooling state, where
non-linear behaviors happen. Both models fail to accurately
replicate this transitional behavior, and our statistics show
an alignment below 90%. Namely, the ranges of the 3 fidelity
metrics for MAD values in the range [1, 1.5] that the 2-
P model obtains are %MS=[0.86, 0.89], FD=[0.433, 0.712],
and ED=[0.122, 0.180]. In turn, the ranges of values of
these metrics for the 4-P model are %MS=[0.89, 0.92]
FD=[0.591, 0.734], and ED=[0.135, 0.178]. This implies that,
given that MAD, neither model is able to faithfully repro-
duce the behavior of the incubator.

In the second scenario, the activation and deactivation
periods of the heater are longer, providing both models with
an opportunity to better predict the 20-second cooling part.
The 2-P model, which again struggles to model transitions
effectively, incorporates a small cooling effect after each
heating period. The result is a sawtooth pattern that does not
resemble the actual behavior of the system, see Fig. 11 (top):
statistics indicate that less than 80% of points are aligned,
with value ranges of %MS=[0.72, 0.77], FD=[0.890, 0.974],
and ED=[0.228, 0.319] for MAD values in the range [1, 1.5].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 14

TABLE 2: Fidelity results for scenario Ht30Hg20.
2-P Model 4-P Model

MAD (ºC) %MS FD ED %MS FD ED

0.2 54.14 0.17 0.04 89.65 0.19 0.03
0.4 57.80 0.39 0.08 93.84 0.34 0.05
0.6 62.97 0.59 0.13 95.71 0.56 0.07
0.8 67.43 0.78 0.17 96.52 0.65 0.08
1 72.25 0.89 0.22 97.05 0.65 0.10

1.2 75.37 0.91 0.28 97.59 0.65 0.11
1.4 77.25 0.97 0.31 98.03 0.65 0.12
1.6 80.19 1.06 0.37 98.21 0.65 0.13
1.8 81.89 1.22 0.42 98.39 0.65 0.14
2 83.76 1.44 0.47 98.66 0.65 0.15

0 500 1000 1500 2000 2500 3000 3500

20

25

30

35

40
Physical Twin

Digital Twin

timestamp(s)

t
e
m

p
e
r
a
t
u
r
e
(
d
e
g
r
e
e
s
)

0 500 1000 1500 2000 2500 3000 3500

20

25

30

35

timestamp(s)

t
e
m

p
e
r
a
t
u
r
e
(
d
e
g
r
e
e
s
)

Fig. 11: Alignments for the 2-P model (top) and the 4-P
model (bottom) in scenario Ht30-Hg20 with MAD=1.20ºC
(Note: the PT trajectory is displaced 5 degrees for improved
visualization).

The 4-P model performs better in this scenario because
it is less sensitive to these long cooling gaps and can
accurately capture transitions in these conditions, resulting
in a total of 98% aligned snapshots, with %MS=[0.97, 0.98]
FD=[0.65, 0.65], and ED=[0.100, 0.127]. Thus, the 4-P model,
as shown in Table 2 and Fig. 11 (bottom), faithfully emulates
the incubator behavior. Namely, it only deviates on average
0.1°C from the PT, with short peaks of just 0.65°C difference,
being able to match more than 97% of the snapshots.

Figure 12 shows the comparative trend of these two
models. The 4-P model reaches a plateau in all three metrics
near 1ºC, while the other model continues to increase the
percentage of matched snapshots at the expense of increas-
ing the average and peak distances.

After performing the analysis, we can conclude that the
2-P model does not accurately replicate the behavior of the
incubator. It fails to approximate precisely the temperature
and transitions of the system. In turn, the 4-P model is
not reliable when the heating time and gap are too short.
However, it accurately simulates the system behavior when
the transition is slower, as observed in the second scenario.

To compare the fidelity of different behavioral models
of the same system, we analyze the alignments and fidelity
metrics values. The model that returns a higher %MS and

 0

 50

 100

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2
 0

 0.2

 0.4

 0.6

2-P Model

4-P Model

MAD (ºC)

%
M

S
F
D

 (
º
C

)
E
D

 (
º
C

)

Fig. 12: Fidelity metrics comparison of the incubator for
scenario Ht30-Hg20. (Note that the scale and units are different
from Fig. 6)

lower ED and FD is considered more faithful. However,
determining if the more faithful model is the most suitable
for a specific problem is not straightforward. Other factors,
such as whether the model accurately reproduces behavior
sequences relevant to the given application, even if they
are fewer in number of snapshots, need to be taken into
account. Similarly, if a model has a lower %MS than another
but reproduces certain behaviors of interest with greater
precision, it could be more suitable, even if it is not the
most faithful overall. Our tool provides both local and
global assessments of different characteristics that influence
fidelity. Still, the domain expert must make the final decision
to determine the most appropriate model for their specific
problem.

6.1.2 Robotic arm: Multiple numerical attributes

Description

This case study shows another use case of our proposal,
where the DT acts as the oracle, and we want to check
whether the PT is faithful enough to the DT. More precisely,
in this case study, we are interested in evaluating whether
a given physical device, namely a robotic arm, can behave
according to the requirements demanded by the user. These
requirements are defined by models that specify the ex-
pected behavior in various usage scenarios. That is, our
starting point is a set of engineering models [36], and we
need to measure the fidelity of the robot we plan to use in
our plant, and whether it fits its purpose: transport small
and light objects, similar to the crane example presented in
the introduction section of this paper [12]. There are several
robotic arms on the market capable of doing this job, each
with different features and costs, e.g., the ABB GoFa CRB
15000, the Nyrio Ned, or the Arduino Tinkerkit Braccio
robot. These types of robots have six servos that control
their joints: the orientation of the base (s1), the position of
the shoulder (s2), the elbow (s3), the vertical position of the
wrist (s4), its rotation (s5), and the gripper (s6).

In this section, we will analyze the last one, the Braccio
robot [37], a low-cost robotic arm that has been successfully
used in different applications [38]. Given its reduced price,
we are interested in testing whether it could serve our pur-
poses in two usage scenarios, as they are not too demanding.
The first scenario (named Simple Moves) corresponds to a set
of four commands involving 2 or 3 servos at a slow pace.
The second represents a more complex movement (named
Pick&Drop) in which the arm has to grasp a distant object,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 15

TABLE 3: Fidelity results for scenario SimpleMoves.
Axis position (degrees) Grip’s Coordinates (mm)

MAD %MS FD ED MAD %MS FD ED

0.2 77.39 0.22 0.01 3 84.76 3.93 0.09
0.8 84.52 1.32 0.06 6 90.37 7.88 0.41
1.4 90.49 2.03 0.15 9 91.10 9.64 0.47
2 90.98 2.27 0.17 12 91.22 11.47 0.51
2.6 91.40 2.28 0.22 15 91.46 11.47 0.57
3.2 91.59 2.28 0.23 18 91.59 13.19 0.65

TABLE 4: Fidelity results for scenario Pick&Drop.
Axis position (degrees) Grip’s Coordinates (mm)

MAD %MS FD ED MAD %MS FD ED

0.2 0.20 0.2 0.15 3 59.35 4.13 1.44
0.8 51.95 1.36 0.66 6 73.47 8.44 2.47
1.4 75.07 1.91 0.98 9 78.17 12.21 3.31
2 78.07 2.69 1.31 12 79.47 12.12 3.72
2.6 78.47 2.72 1.63 15 81.08 14.85 4.35
3.2 78.78 2.79 1.92 18 82.08 14.85 5.13

raise it 30 cm, move it 50 cm, lower the arm, release the
object, and return to the initial position. We developed some
models with the required behavior of the servos (they are
available on the paper companion website [27], [28]). For
simplicity, we only considered the movements of the robot
assuming very light loads, so they do not affect the speed or
the trajectory of the arm.

Fidelity assessment
In the SimpleMoves scenario, the arm’s movements involve a
maximum of 3 servos at a slow pace. This ensures stationary
servo positions and generates smooth transitions similar to
those produced by the engineering model. We achieve ade-
quate results in this scenario, matching more than 90% of the
snapshots. For a MAD between 2 and 3 (the accuracy of the
servos is 1 degree), the ranges of the three fidelity metrics
are as follows: %MS=[90.98, 91.59], FD=2.28, ED=0.23 (see
Table 3). These findings indicate that the robot is well-suited
to emulate the behavior described in this scenario.

However, when executing the Pick&Drop scenario, which
involves faster movements and concurrent activation of
multiple servos, the results are less satisfactory. The fidelity
metrics values decrease because the robot struggles to main-
tain fidelity in a more complex scenario: %MS=[78.07, 78.78],
FD=[2.72, 2.79], ED=[1.63, 1.92] (see Table 4).

To further investigate the causes behind this decline, we
calculated the coordinates of the gripper and performed the
alignments for both scenarios. The results of the metrics
for the alignments using the coordinates are also presented
in Tables 3 and 4. Similar to the servo values, the data
indicates that the arm performs well in the first scenario
but deteriorates in the second. For a clear understanding
of why the arm fails in the second scenario, we analyzed
the alignment for a MAD value of 15 mm, depicted in
Figure 13 (the accuracy of the robot coordinates is 5 mm [38],
and therefore we considered MAD values between 10 and
15). The figure illustrates how the arm remains stationary
for extended periods, unable to react within the required
response time, resulting in a 20% of gaps in the alignment.
These gaps are visible in the alignment plot when the PT
stays still for longer periods. Additionally, we observe that
Braccio’s transition movements are slower compared to the
engineering model. However, this discrepancy falls within

−250

−200

−150

−100

−50

0

0

50

100

150

200

0 5k 10k 15k 20k

0

100

200

300

400

500

Physical Twin

Digital Twin

timestamp(s)

x
 (

m
m

)
y
 (

m
m

)
z
 (

m
m

)

Fig. 13: X-Y-Z alignments for the Pick&Drop scenario,
MAD=15 mm (Note: the PT trajectory is displaced 30 mm
for improved visualization).

the MAD range, enabling the algorithm to align most of the
snapshots. In conclusion, the Braccio robot would require
a faster response time to accurately emulate the behavior
established by our engineering model.

In this assessment, the snapshot comparison function
is similar to that of a single attribute. It evaluates if the
difference between each property of interest is within the
corresponding MAD range to categorize it as a match.

When considering more than one attribute (in this exam-
ple, six), the comparison is more restrictive, including gaps
and mismatches, even when only one attribute is outside
the MAD range. For example, in the case of the robotic
arm, all servo values are crucial in the comparison, and all
must be taken into account. If one of the servos is delayed
or at a different angle, even though the rest are function-
ing as expected, this could denote that the robotic arm is
performing a completely different task. However, in cases
where some attributes are not as crucial in the evaluation,
the comparison function could be adapted to reduce the
level of similarity to some extent rather than considering
the difference as a mismatch. Another option could be to
analyze the different properties of interest separately to
detect individual inconsistencies.

Finally, note that in this example and in the previous
one, there was no need to consider low-complexity regions
and the associated LCAW. They are only required when the
system exhibits large periods of stationary behavior. These
segments can affect the alignment because they produce
high matching rates that divert the algorithm from searching
for alignments in the most relevant parts of the traces.

6.1.3 Lego Car: Boolean and enumerations

Description

The Lego NXT Car is the example that we used for the
prototype of our approach introduced in [39]. The Lego NXT
Car is an example of a robot that comes with several built-in
sensors.

Figure 14 shows a snapshot of the robot with its at-
tributes. The robot has a pose-provider that returns its
current planar coordinates and the angle of its direction,
represented by xPos and yPos. It also has an ultrasonic

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 16

Snapshot
timestamp : Integer
executionId : Integer

CarSnapshot
twinId : String
xPos : Real
yPos : Real
angle : Real
speed : Real
isMoving : Boolean
distance : Integer
bump : Boolean
light : Integer
action : Action

Fig. 14: UML Class of the NXT Lego Car Snaphot

TABLE 5: MAD values for Lego NXT Car.

Parameter Accuracy MAD

xPos, yPos 0.50 cm 1.50 cm
angle 0.05 degrees 0.15 degrees
speed 0.50 cm/s2 1.50 cm/s2

isMoving - -
distance 0.50 cm 1.50 cm
bump - -
light 0.05 0.15
action - -

sensor that measures the distance to an object in front of
it, a light sensor that determines the color of the ground
beneath it, and two touch sensors that act as a bumper
to detect collisions. Additionally, the robot can detect its
current speed and whether it isMoving. The programming
of this robot allows it to set states depending on the action it
is executing, so it also provides the action that it is currently
performing.

To simulate the car’s actions, we developed a Digital
Twin employing the USE modeling tool [31]. We used it to
demonstrate that the behavior of the real car was not totally
reliable due to the inaccuracy of its sensors, the slowness
of its controllers, and the slack in its parts, as it could not
faithfully replicate the same trajectories. However, this is a
very illustrative example of when synthetic traces are used
as PT, which contain variations synthetically generated.

Fidelity assessment

To align the snapshots, the Boolean attributes such as bump
and isMoving and the enumeration types such as action must
have identical values. Please note that the MAD for each
sensor, as listed in Table 5, is three times the corresponding
sensor accuracy. If there is a discrepancy in non-numerical
values, or the numerical values differ beyond their respec-
tive MADs, the similarity function will return 0, indicating
that the snapshots do not match.

In this scenario, the PT follows a slightly different path
by increasing its speed by 1.5 during a specific period.
However, since this increase in speed is within the MAD,
it does not affect the alignment, as we are not as strict. If
we reduced the MAD, we would be able to pinpoint this
difference. In contrast, the algorithm detects inconsistencies
in the bump attribute, identifying two collisions by the end
of the trace, and in the action attribute, performing two of
the rotations later than the DT predicted. In both cases,
gaps are introduced in the alignment since the enumerated

5

10

15

20

5

10

15

20

−2

0

2

4

6

30

30.5

31

−1

0

1

−1.5

−1

−0.5

0

0 500 1000 1500 2000

#Forward

#Rotate

Physical Twin

Digital Twin

timestamp

x
P
o
s

y
P
o
s

a
n
g
le

s
p
e
e
d

is
M

o
v
in

g
b
u
m

p

a
c
t
io

n

Fig. 15: Alignments for the Lego NXT Car (Note: the PT
trajectory is displaced 1.5 units and the attributes distance and
light were not included for improved visualization).

and boolean types must strictly match. Considering this,
the %MS is 70%, FD is 1.58, and ED is 0.7. This means
that although at least 30% of the trace is not matched due
to inconsistencies in action and bump detection, the rest
of the behavior was reproduced within our requirements.
We could measure the distances for every attribute to find
which would contribute to better replicating the behavior.
This would conclude that attributes such as xPos and yPos
include the most significant difference, as opposed to speed
or angle, whose values are similar.

Apart from this example, we included a set of different
executions in the corresponding Technical Report in [40].
Some of these examples showcase partial inconsistencies in
one of the attributes and how they affect the fidelity metrics.

When evaluating the fidelity of snapshots with Boolean
or enumerated attributes, the approach is similar to the
one with multiple numerical attributes, ensuring that the
differences between the attributes of paired snapshots are
within the MAD. However, the alignments become even
more restrictive. Suppose there are any differences in non-
numerical attributes. In that case, the snapshot will be
considered a gap or mismatch, which helps to identify
inconsistencies, even if they exist in just one of the attributes.

In the Lego car example, these constraints are essential
because we want to determine whether Boolean sensors,
such as the bumper, are working correctly. If the bumper
provides an incorrect value in either the DT or the PT,
it could denote that the virtual environment is incorrectly
configured or that the sensor is not working. Similarly, if the
position is accurate but the enumerated value of the action

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 17

includes a different value, it could mean that the logic of the
DT differs from that of the PT.

Nevertheless, if Boolean or enumerated attributes do not
represent properties of interest and should not be consid-
ered, they could be excluded from the alignment. Another
possibility would be to modify the comparison function to
reduce the level of similarity without causing a mismatch.
However, in cases where attributes are crucial to the state
of the system, the match should be avoided if they have
different values, even in only one of them.

6.2 Empirical Evaluation
In this section, we further evaluate our proposal by answer-
ing the following research questions (RQs):

RQ.1 How effective is our proposal in evaluating fidelity
compared to existing approaches?

RQ.2 What is the time complexity of the different config-
urations of our algorithm?

RQ.3 How does the execution time of our proposal com-
pare to that of other related approaches?

To answer RQ.1, we performed a comparison study
with two of the closest proposals [41], [42]. We analyze the
expressiveness of their results and their ability to measure
fidelity. We also compare their performance. RQ.2 and RQ.3
are answered by conducting experiments with varying trace
lengths and performing regression analysis to estimate time
complexity. All detailed results of the fidelity assessments
presented in this section are available in the companion
technical reports [43], [44].

6.2.1 Comparison with other proposals (RQ.1)
To illustrate the differences between our algorithm and the
state of the art, we compared our algorithm with two of
the closest proposals using the Elevator Case Study. The
full comparison, including figures and statistical results, is
available in the technical report [25].

Dynamic Time Warping
Dynamic Time Warping (DTW) [42] is a dynamic program-
ming algorithm used to measure the similarity between two
temporal sequences, which may vary in speed. It computes
an optimal alignment between the two sequences, minimiz-
ing the distance between the aligned points. Unlike NDW,
it allows one-to-many and many-to-one matches because
DTW assumes that one sequence is a time-warped version
of the other, i.e., the target sequence is stretched (one-to-
many), condensed (many-to-one) or unwarped (one-to-one)
with respect to the source sequence. Therefore, DTW does
not support the notion of gaps, while NDW takes gaps
explicitly into account and assigns a penalty per gap. To
show the differences with our proposal, we conducted the
same alignment as the one in Subfigure 4c using DTW. The
results of this alignment are presented in Figure 16. During
our analysis, we discovered two main limitations of the
algorithm. First, as it does not support gaps, it aligns all
elements, even those with low similarity. For example, it
aligns the smoothing braking patterns of the PT (seconds
38 and 68) with zero-acceleration snapshots of the DT trace.
Thus, the percentage of matched snapshots is always 100%.
Therefore, the alignments produced are not very informa-
tive, as they lose information on gaps and mismatches. This

0 10 20 30 40 50 60 70

−2

−1.5

−1

−0.5

0

0.5

Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)

Fig. 16: DTW for Scenario (4-0-4). Execution 04.

is essential to determine differences between traces and to
pinpoint anomalies.

Second, and more importantly, one-to-one or many-to-
one alignments are not well suited for comparing traces
or accurately calculating their distances. For example, in
the alignment in Figure 16, the DTW algorithm aligns one
snapshot with 28% of the snapshots of the other trace. This
leads to unreliable results and does not accurately represent
the actual similarity between the traces. Some studies have
highlighted the inadequacy of this approach, and various
proposals include methods to mitigate this issue, e.g., [45].
This is also why our alignments are one-to-one and may
contain gaps and mismatches.

Several alternative implementations of DTW exist, each
aimed at addressing specific challenges. For instance, some
versions focus on reducing time complexity to speed up
computations [46], while others aim to mitigate issues such
as overstretching and overcondensing [47], [48]. However,
these approaches have their own limitations. They cannot
guarantee the optimal solution and typically require fine-
tuning parameters. If these parameters are not properly
tuned, there is a risk of overfitting to specific characteristics
of the training data.

To avoid these potential drawbacks, we restrict our com-
parison to the original implementation of DTW [42]. This
allows for a more general and straightforward comparison
to other proposals, as the original algorithm guarantees
optimal solutions without the need for parameter tuning.

Online Validation of DTs by Lugaresi et al.
The second proposal is the approach from Lugaressi et al.
[41], which introduces three metrics to validate the DT at
run-time using trace alignment algorithms based on dy-
namic programming. The evaluation is performed at two
different levels of abstraction: events and KPIs. Even though
our proposal analyzes the traces offline, this is not critical for
comparing the behavior of the algorithms applied.
Event-level validation. To evaluate the sequence of events,
they used the Longest Common Subsequence (LCSS) algo-
rithm, which aligns two sequences of characters and finds
the longest sequences of equivalent elements between them.
A parameter δ is established to represent the time window
in which two events could be aligned. The authors propose
a metric that calculates the length of the LCSS divided by
the longest trace. This provides the percentage of snapshots
that are included in this subsequence.

To compare this approach, which we call LCSS-Events,
we added events to the raw trace of Scenario (4-3-2-1-0-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 18

0 50 100 150 200

−2

−1.5

−1

−0.5

0

0.5

Physical Twin

Digital Twin

timestamp(s)

a
c
c
e
l(

m
/s

2
)

Fig. 17: Affine Gap + LCAW for Scenario (4-3-2-1-0-1-2-3-4).

TABLE 6: Event-validation using LCSS statistics for scenario
(4-3-2-1-0-1-2-3-4). Trace length of 24 events.

δ normalized score score / LCSS length

6.9 0.00 0
7.2 0.42 10
7.5 0.92 22
7.8 1.00 24

1-2-3-4) in Figure 17, in which the elevator goes down,
stopping at every floor, and then goes up doing the same.
We represented the events with four types: "Down," "Up,"
"Brake," and "Arrival." Each event was manually assigned
to a specific snapshot, corresponding to an acceleration
change during the elevator’s operation. As a result, the trace
included 24 events.

One problem with raising the level of abstraction to
events is that their identification may not be trivial. Our
approach enables the alignment of snapshots at any level of
abstraction, from events to raw traces.

By gradually increasing the value of δ, we obtained
the results presented in Table 6. Starting from 6.9 seconds,
where no subsequence is returned, we reach the maximum
score of 1 at 7.8 seconds. These results indicate that all
the events are included in the correct order, but they are
delayed by 7 to 7.8 seconds. Visualizing the traces aligned by
our algorithm made this interpretation easier. However, this
result alone does not identify specific reasons for the delay.
It only shows that a certain similarity value is achieved with
a certain δ.

This approach does not provide the resulting subse-
quences, which prevents reasoning about the results when
they are bad, based on a single metric. Even if subsequences
were provided, stuttering in the trace could result in short
subsequences. This is something that could occur even if the
traces have a high similarity due to alternating behavior.

KPIs-level validation. For the KPIs-level validation, we de-
fined the KPI average time between floors as the time between
the events ("Up," "Down") and the stopping of the elevator
("Arrival"). We applied this metric to the scenario (4-3-2-1-0-
1-2-3-4) in Figure 17. To evaluate KPIs, the authors propose
two metrics.

The first one also uses the LCSS algorithm, which we call
LCSS-KPIs, with an additional parameter ϵ that determines
the maximum difference between two KPI values to be
considered similar. It then divides the resulting LCSS by
the length of the longest trace. By gradually increasing
the value of ϵ in the adapted trace, we obtain the results
in Table 7. Based on these results, we can only conclude

0 50 100 150 200

−1.5

−1

−0.5

0

0.5

1
Physical Twin

Digital Twin

timestamp(s)

A
v
g
.

t
im

e
 b

e
t
w

e
e
n
 fl

o
o
r
s
 (

s
)

Fig. 18: DTW alignment for Scenario (4-3-2-1-0-1-2-3-4) us-
ing KPI avg. time between floors. (Note that it includes only 10%
of the values for improved visualization)

that 0.5 seconds is the maximum difference between the
furthest two average values. It should be noted that, as in
the previous algorithm, the resulting subsequences are not
provided, which makes it difficult to identify and analyze
any discrepancies. In addition, there may be instances where
partial matches are found in certain areas of the sequence,
but a sequence of unaligned values separates them. Such
cases would result in a low score, as with stuttering, since
this metric suffers from the same limitations as the previous
one.

Additionally, when dealing with KPIs, the aggregation of
values may mask anomalous events. This is because outliers
may take some time to affect certain metrics, which results
in an inefficient monitoring system.

TABLE 7: Performance-validation using LCSS statistics for
scenario (4-3-2-1-0-1-2-3-4). Trace length of 1983 values of
the average time between events.

ϵ normalized score score / LCSS length

0.1 0.099 197
0.2 0.099 197
0.3 0.224 444
0.4 0.722 1431
0.5 0.964 1911

The second metric applied to KPIs uses DTW to align a
normalized version of the input sequence values. We refer
to their implementation of DTW as DTW-Lugaressi. The re-
sults are included in Figure 18, in which we see how the KPI
value changes as the execution progresses. This alignment
is greatly affected by over-stretching and over-condensing,
introduced in the previous section, which leads to unreliable
results. For instance, in this particular alignment, one KPI
value of the PT is aligned over 1700 times. Therefore, it is
difficult to draw any further conclusions from these results
due to the strong influence of this phenomenon.

In addition to the aforementioned limitations of the
DTW algorithm for aligning traces, the normalization pro-
cess can also hinder the comparison of traces with large
differences between their values (cf. [25]). Let us assume we
normalize the following traces to measure their similarity
using the proposed metric:

A = {0.05, 0.05, 0.05, 0.05, 0.05} A = {1, 1, 1, 1, 1}
B1 = {0.01, 0.02, 0.03, 0.04, 0.05} B1 = {0.2, 0.4, 0.6, 0.8}

If we apply DTW to align them, the resulting distance is 2.
Now, let us align a new trace B2, which contains the same

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 19

0 2k 4k 6k 8k 10k

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Snapshots

E
x
e
c
u
t
io

n
 t

im
e
 (

s
e
c
o
n
d
s
)

DTW-Snaps

DTW-Lugaresi

LCSS-Events

LCSS-KPIs

NDW-Aff-LCAW

NDW-Aff

NDW-LCAWNDW

Fig. 19: Performance of the compared algorithms.

elements as B1 but with one outlier value.

A = A = {0.05, 0.05, 0.05, 0.05, 0.05}
B2 = B2 = {0.01, 0.02, 0.03, 0.04, 1}

These two traces are less similar because the last value of the
second trace is further apart than the last value of the pre-
vious trace, B1. However, when normalization is applied,
the distances between the other elements become smaller in
comparison. Thus, the algorithm returns a distance of 1.05,
which is smaller than the previous distance, meaning that
B2 is more similar to A than B1, which is not the case.

Answer to RQ.1: Our approach is more effective than
other considered methods of the existing literature in
detecting and diagnosing delays and anomalies and for
measuring the behavior similarity between traces of the
same scenario. Unlike DTW, our proposal is unaffected by
overstretching or overcondensing, effectively identifying
discrepancies between traces. Furthermore, our approach
is more general than the proposal by Lugaressi et al. [41],
as it can align both sequences of events and raw traces.
Finally, our approach also provides a concrete alignment
of the trace, enabling the detection of inconsistencies and
support in its diagnosis.

6.2.2 Time complexity and scalability analysis (RQ.2-3)
In this section, we will compare the time performance of
different configurations of our algorithm with the state-of-
the-art algorithms introduced in the previous section. To
determine the time complexity, we conducted alignments
using the same scenario, gradually increasing the number
of snapshots from 100 to 10 000. If the scenario did not in-
clude enough snapshots, we simulated a restart by running
through it in a loop. Next, we measured the execution time
for each alignment and attempted to perform a regression
analysis to estimate the time complexity and compare it
across the algorithms. Each alignment with a set length
was repeated five times. The complete analysis with all the
measurements is available in [25].

To generate the graphics in Figure 19, we used polyno-
mial regression analysis to determine each algorithm’s time
complexity. The regression results are available in Table 8.
Needleman-Wunsch configurations (RQ.2). We analyze the
performance of the proposed algorithm, with and without
the inclusion of LCAW and Affine Gap, i.e., four versions:
NDW, NDW-LCAW, NDW-Aff, and NDW-Aff-LCAW. The
regression results of the execution time of all configurations
are shown in Table 8 and exhibit approximately quadratic

complexity, consistent with their theoretical complexity as
dynamic programming algorithms.

It is worth noting that including the Affine Gap in our
algorithm results in a 30% decrease in performance since
each matrix cell’s computation requires the algorithm to
consult and modify three matrices to decide whether to
include a gap in either sequence. This means that if the
user is not concerned about preventing gap alternation,
they could choose not to use the Affine Gap to reduce
computational costs.

Answer to RQ.2: The time complexity of our algorithm
and all its configurations is quadratic with respect to the
number of snapshots. The Affine Gap optimization re-
quires the algorithm to consult and modify three matrices
in each step, causing a 30% decrease in performance. The
LCAW optimization worsens performance by less than
1% without the Affine Gap, but this impact increases to
6% when the Affine Gap is included.

TABLE 8: Regression analysis results for the alignment
algorithms.

Algorithm name Regression result Time Complexity

NDW-Aff-LCAW y = 1.83 · 10−6x2.04 O(n2.04) ≈ O(n2)
NDW-Aff y = 2.82 · 10−6x1.98 O(n1.98) ≈ O(n2)
NDW-LCAW y = 1.40 · 10−6x1.98 O(n1.98) ≈ O(n2)
NDW y = 1.40 · 10−6x1.97 O(n1.97) ≈ O(n2)

DTW-Snaps y = 1.07 · 10−6x1.96 O(n1.96) ≈ O(n2)
DTW-Lugaresi y = 9.92 · 10−6x2.05 O(n2.05) ≈ O(n2)
LCSS-Events y = 26.0 · 10−6x1.88 O(n1.88) ≈ O(n2)
LCSS-KPIs y = 15.7 · 10−6x1.86 O(n1.86) ≈ O(n2)

Comparison with other proposals (RQ.3) We also com-
pare the performance of our algorithm with the other ap-
proaches mentioned in the previous section: LCSS-KPIs,
LCSS-Events, DTW-Snaps, and DTW-Lugaresi. The first two
use the LCSS algorithm. DTW-Snaps applies the original
DTW algorithm [42] to the traces, and DTW-Lugaresi is
the original implementation from [41]. The latter uses the
numpy.min function to find the minimum value for each cell,
whose performance is poor for small sets of numbers. This
is the main reason for this algorithm’s overall performance.

All algorithms also demonstrate approximately
quadratic complexity, as shown in Table 8. All versions of
our algorithm perform better than the others by at least a
60% except for DTW-Snaps. However, we have seen that
DTW may not be suitable for aligning execution traces
because it aligns all events, ignores gaps and mismatches,
and generates inaccurate distance metrics.

Answer to RQ.3: The time complexity of all dynamic
programming algorithms considered here is quadratic, as
expected. However, the average computational time for
the implementations by Lugaresi et al. is greater than that
of any of the possible configurations for our proposal. In
turn, the original version of DTW [42] outperforms the
different configurations of our algorithm in computation
time, as it does not consider as many restrictions in the
alignments as we do. However, as we have shown above,
this leads to imprecise measurements when dealing with
over-stretching or over-condensing.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 20

6.3 Limitations and threats to validity
The proposal is subject to several limitations and other
threats that may question its validity.

First, we have validated the proposed approach with
four DTSs. They were selected from different application
domains and with different characteristics, and our pro-
posal has demonstrated to work similarly well with all
three. However, we still need to perform further valida-
tion exercises with other types of systems, to check the
generalizability of our results. For example, the threshold
and parameter values used by our algorithm and fidelity
indicators should be confirmed and validated with more
industrial case studies.

Second, we assume that we can capture the behav-
ior of digital and physical twins as discrete sequences of
states (snapshots) at the appropriate level of abstraction
and resolution. Although this is a common assumption for
most systems, we need to investigate further whether this
representation is always possible and sufficiently faithful,
as in the case of highly dynamic systems, e.g., those involv-
ing fluids, complex interactions between parts of different
natures, or human beings.

Third, our proposal has several parameters that must be
tailored to each digital twin system fidelity measurement:
MAD, affine gap values (Pop, Pex), LCAW, and the fidelity
indicator thresholds. Although we have proposed some
default values for them, they depend on the actual system
and, therefore, might require some tuning by end users.

We have also seen how our fidelity indicators were
robust enough to absorb the inherently stochastic nature
and random uncertainty of cyber-physical systems, as well
as the variability of different runs of the same system. Or,
at least to keep this variability under control. However, we
need to validate this with further tests and more evidence
from different systems.

Another limitation of our current proposal is that it
requires comparing the complete traces to determine the
degree of fidelity of the systems. In this sense, it represents
a first step towards a more dynamic approach capable of as-
sessing the fidelity of the two twins lively at runtime. This is
part of our upcoming research work. Similarly, our proposal
currently does not handle real-time synchronization of the
two twins, something we also plan to investigate in future
work.

7 RELATED WORK

7.1 Validation of DTs
Traditional validation techniques rely on statistical methods,
which require large data sets and multiple independent
replications due to the stochastic nature of the physical
system [49]. Data for validation purposes can be obtained
using two main types of simulations [50]. In a self-driven
simulation, the model is executed by generating input data
through sampling from probabilistic models. Typically, in-
put data is represented by fitting probability distributions to
the observed data. In a Trace-Driven Simulation (TDS) [51],
the model is executed using as input the same trace data
collected from the system.

The use of the trace alignment algorithm allows a more
accurate comparison of traces that are expected to represent

analogous behaviors, thus improving not only trace-based
simulations but also the analysis with our proposal of any
two traces describing the same synchronized behavior.

7.2 Similarity measurements

Measuring the level of similarity in a DT system is becoming
relevant because of the importance of defining the DT at
the minimum required level of fidelity to optimize compu-
tational costs [52]. Some existing proposals, such as [16],
assess the required level of fidelity using a validity frame,
which is defined along with a semi-automated methodology
to establish the suitability of a given simulation. However,
the majority of the proposals for assessing the similarity
between two groups of simulations use dedicated measures.
For example, the Kullback-Liebler Divergence (KLD) measure
is used in [53] to calculate the difference between two proba-
bility distributions in order to assess the degree of variability
between runs. The Jensen-Shannon Distance is used in [54].
This is a normalized symmetrical version of KLD that takes
into account the uncertainty involved in non-deterministic
executions, checking for a certain level of variability.

These approaches are similar to ours, although they
focus on comparing probability distributions. Moreover,
they do not consider alignments that may contain gaps and
mismatches.

7.3 Trace analysis

Recent approaches compare data traces (or sequences) for
validating in real-time digital models [7]. For example,
semantic matching rules are defined in [9] to identify the
differences between traces. The work [10] defines a set of
operators for comparing execution traces of state machine
models, and uses the Levenshtein distance [20] to measure
their similarity.

In these works, the system traces are either synthesized
from executions [11], [55] or inferred from the system spec-
ifications, e.g., from state machines [56]. Process mining
techniques [57] are also used to infer trace models from
event logs. They use similarity measures as part of their
conformance-checking algorithms to assess the accuracy of
the discovered models. For example, a variant of the Dam-
erau–Levenshtein distance [58] is used in [59] to compare
traces in the event log. Moreover, traces are paired using the
Hungarian algorithm [60] to minimize their distance. The
similarity between event logs is then assessed as the overall
distance between paired traces.

These algorithms aim at global alignment of the traces,
as opposed to those that look for local alignments, such as
BLAST. We would use local alignments if we were looking
for a specific behavior in the traces. For example, a floor
change pattern in one of the elevator traces. However, we
aim to compare the complete traces and therefore need a
global alignment algorithm like NDW. Nevertheless, we
have made use of some of the key optimizations used in
BLAST to improve ours.

Similar to these works, we utilize traces obtained from
model or system executions and apply a pairing algorithm.
However, unlike these approaches, we focus on cyber-
physical systems that inherently include uncertainties in
behavior. Hence, we introduce the MAD parameter to allow

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 21

for a certain tolerance when aligning snapshots. Further-
more, our algorithm accommodates the presence of gaps,
enabling not only the detection of equivalent behavior but
also the identification of absent behaviors and deviations.
7.4 Online validation techniques

Online validation techniques are also used in the domain of
Digital Twin engineering [41]. The main difference with the
previously mentioned works is that they compare the traces
of the real system and of the digital twin to assess their
validity, using Trace-Driven Simulation (TDS) [51]. The out-
come of the validation process is expressed as a percentage
of credibility rather than a binary variable assessing the
correctness in absolute terms.

Initial works focus on continuous traces, using tech-
niques such as harmonic analysis [61]. Compared to statis-
tical techniques, these methods are able to achieve reliable
results even when applied to relatively small data sets.

Dynamic Time Warping (DTW) is used in [62] to measure
the similarity between a person and a robot arm during real-
time imitation, comparing the sequences of traces retrieved
from its execution. Similarly, works such as [10], [55] adapt
algorithms for analyzing sequences of characters to analyze
traces, considering each of the individual measurements as
a character. A similar algorithm is proposed in [41] and suc-
cessfully applied on a simple single server system. Likewise,
in [39] we proposed the first version of our algorithm, using
a modified version of the Needleman–Wunsch algorithm
to align the traces and compute some distances. A recent
work [7] is probably the closest to our proposal, as presented
in section 6.2.1. They use a variant of the Dynamic Time
Warping (DTW) algorithm for aligning the traces, enriched
with a comparison function to identify similar events. Al-
though these works [7], [39] align the traces before defining
distance measures, they do not make use of some of the
key optimizations provided by the BLAST algorithm, such
as the possibility of defining strategies for deciding how to
deal with sequences of gaps or for masking low-complexity
regions, nor use the MAD threshold or define any of our
fidelity indicators, which have proven instrumental for the
effective assessment of the fidelity of the two twins. Our
experiments have demonstrated the importance of taking
these optimizations into account to avoid incorrect adjust-
ments in the alignments or wrong measurements of the
distance between the traces.

8 CONCLUSIONS AND FUTURE WORK

In this work, we propose both a method and a set of metrics
to assess the fidelity of the behavior of two twins, based on
the comparison of the sequences of the states they reach
during execution. To achieve this, we propose a discrete
definition of the twins’ behavior as a sequence of snapshots.
We adapted a character alignment algorithm from Bioin-
formatics and defined a comparison function to assess the
similarity between pairs of snapshots. After aligning the two
traces using the algorithm, we obtain a set of metrics (%MS,
FD, and ED) that are able to evaluate the fidelity between
them. Additionally, we propose a guide to interpret these
metrics and determine the degree of fidelity of the twin.

This approach can be applied not only to compare the
behavior of two systems in the context of DTSs, but also to

assess the degree of similarity of the behavior of any two
systems. These systems can be both physical (such as two
instances of the same machine, in which we want to identify
behavioral deviations), digital (evaluating the fidelity of
two simulations designed with different levels of detail,
comparing a validated one with one under development),
or one physical and one digital, as in the case of DTSs. The
algorithm is applicable in any context where two systems
are expected to exhibit twinned behavior.

The proposal is subject to several limitations that high-
light the need for further research. For example, the al-
gorithm, its parameters and the threshold values defined
here should be confirmed and validated with more in-
dustrial case studies. Additionally, we intend to compare
our algorithm with other state-of-the-art methods, including
various implementations of DTW. This will help us identify
potential limitations in our approach and explore techniques
to mitigate them. Furthermore, right now the proposal is
able to identify deviations between traces, but is not able
to identify the specific cause of the anomalous behavior
of the model (or the system). A significant advance would
be to study methods and tools to automatically detect the
reason why the model is invalid. In addition, incorporat-
ing uncertainty into our algorithms is a matter of future
research, for which we plan to use our recent results of
representing attribute values as random variables instead of
the traditional crisp values of standard datatypes [24], [63].
Another line of research will focus on runtime validation
of traces by defining time windows or event batches [7],
[61]. This is essential to enable the dynamic and continuous
validation of the two twins throughout the entire lifetime of
the DTS.

In conclusion, our proposal aims to address a gap in the
current state of the art, recognized by both industry and
academia, which calls for the need for tools that enable the
Verification and Validation (V&V) of DTSs [64]. Specifically,
our proposal focuses on assessing the consistency of be-
havior between the DT and PT. In this work, we refer to
this consistency as Fidelity, which is a crucial requirement
for ensuring the effectiveness of DTSs, and that involves
achieving identical (or sufficiently similar) behavior. Our ap-
proach presents a solution that facilitates the analysis of all
these aspects and enables reasoning about the precise causes
behind discrepancies.

VERIFIABILITY

For the sake of verifiability, our prototype as well as all
artifacts of the experiments are available online [27], [28].

ACKNOWLEDGMENTS

This work was partially supported by the Spanish Govern-
ment (FEDER/Ministerio de Ciencia e Innovación – Agencia
Estatal de Investigación) under projects SoCUS [TED2021-
130523B-I00] and IPSCA [PID2021-125527NB-I00], and by
the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technol-
ogy and Development and by the Austrian Science Fund
(P28519-N31, P 30525-N31).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 22

REFERENCES

[1] Digital Twin Consortium, “Glossary of digital twins,” https:
//www.digitaltwinconsortium.org/glossary/index.htm, 2021, ac-
cessed: October 13, 2024.

[2] M. Dalibor, N. Jansen, B. Rumpe, D. Schmalzing, L. Wachtmeis-
ter, M. Wimmer, and A. Wortmann, “A cross-domain systematic
mapping study on software engineering for digital twins,” J. Syst.
Softw., vol. 193, p. 111361, 2022.

[3] P. Muñoz, J. Troya, and A. Vallecillo, “A conceptual architecture
for building digital twins,” in Post Proceedings of the STAF 2023
Workshops TTC 2023, MeSS 2023 and AgileMDE 2023, Leicester,
United Kingdom, July 18, 2023 and June 21, 2023, ser. CEUR
Workshop Proceedings, vol. 3620. CEUR-WS.org, 2023. [Online].
Available: https://ceur-ws.org/Vol-3620/mess23_paper01.pdf

[4] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and
M. Wimmer, “Towards model-driven digital twin engineering:
Current opportunities and future challenges,” in Systems Modelling
and Management. Cham: Springer International Publishing, 2020,
pp. 43–54.

[5] ASME V&V 20-2009, Standard for Verification and Validation in Com-
putational Solid Mechanics, 2009, American Society for Mechanical
Engineers (New York, NY).

[6] R. G. Sargent, “Verification and validation of simulation models,”
J. Simulation, vol. 7, no. 1, pp. 12–24, 2013.

[7] G. Lugaresi, S. Gangemi, G. Gazzoni, and A. Matta, “Online
validation of digital twins for manufacturing systems,” Comput.
Ind., vol. 150, p. 103942, 2023.

[8] D. C. Gross, “Report from the fidelity implementation study
group,” in Simulation Interoperability Workshop. Orlando, FL, USA:
Simulation Interoperability and Standards Organization, 1999,
paper 99S-SIW-167.

[9] P. Langer, T. Mayerhofer, and G. Kappel, “Semantic model dif-
ferencing utilizing behavioral semantics specifications,” in Model-
Driven Engineering Languages and Systems. Cham: Springer Inter-
national Publishing, 2014, pp. 116–132.

[10] D. Leroy, E. Bousse, A. Megna, B. Combemale, and M. Wim-
mer, “Trace comprehension operators for executable DSLs,” in
Modelling Foundations and Applications - 14th European Conference,
ECMFA@STAF 2018, Toulouse, France, June 26-28, 2018, Proceedings,
ser. Lecture Notes in Computer Science, vol. 10890. Cham:
Springer, 2018, pp. 293–310.

[11] R. P. J. C. Bose and W. M. P. van der Aalst, “Process diagnostics
using trace alignment: Opportunities, issues, and challenges,” Inf.
Syst., vol. 37, no. 2, pp. 117–141, 2012.

[12] V. Zhidchenko, I. Malysheva, H. Handroos, and A. Kovartsev,
“Faster than real-time simulation of mobile crane dynamics using
digital twin concept,” Journal of Physics: Conference Series, vol. 1096,
p. 012071, 2018.

[13] S. F. Altschul, B. W. Erickson, and H. Leung, Local Alignment (with
Affine Gap Weights). Boston, MA: Springer US, 2008, pp. 459–461.

[14] A. Arrieta, “Multi-fidelity digital twins: a means for better cyber-
physical systems testing?” CoRR, vol. abs/2101.05697, 2021.

[15] M. Gogolla, J. Bohling, and M. Richters, “Validating UML and
OCL Models in USE by Automatic Snapshot Generation,” SoSyM,
vol. 4, no. 4, pp. 386–398, 2005.

[16] B. V. Acker, P. D. Meulenaere, J. Denil, Y. Durodie, A. V. Bellinghen,
and K. Vanstechelman, “Valid (re-)use of models-of-the-physics
in cyber-physical systems using validity frames,” in 2019 Spring
Simulation Conference (SpringSim), 2019, pp. 1–12.

[17] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” J. Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[18] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
197, 1981.

[19] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool,” Journal of Molecular
Biology, vol. 215, no. 3, pp. 403–410, 1990. [Online]. Available:
https://blast.ncbi.nlm.nih.gov/

[20] V. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707,
1966.

[21] U. Mori, A. Mendiburu, and J. A. Lozano, “Distance measures for
time series in R: the tsdist package,” R Journal, vol. 8, no. 2, p. 451,
2016.

[22] Peters Research, “Elevate software,” 2023. [Online]. Available:
https://peters-research.com/index.php/elevate/

[23] P. Muñoz, J. Troya, M. Wimmer, and A. Vallecillo,
“Measuring the fidelity of a physical and a digital twin
using trace alignments: Elevator technical report,” 2023,
accessed: October 13, 2024. [Online]. Available: https:
//github.com/atenearesearchgroup/fidelity-measure-for-dts/
blob/main/docs/Technical_Report_Elevator.pdf

[24] M. F. Bertoa, L. Burgueño, N. Moreno, and A. Vallecillo, “In-
corporating measurement uncertainty into OCL/UML primitive
datatypes,” Softw. Syst. Model., vol. 19, no. 5, pp. 1163–1189, 2020.

[25] P. Muñoz, J. Troya, M. Wimmer, and A. Vallecillo,
“Measuring the fidelity of a physical and a digital
twin using trace alignments: General concepts,” 2023,
accessed: October 13, 2024. [Online]. Available: https:
//github.com/atenearesearchgroup/fidelity-measure-for-dts/
blob/main/docs/Technical_Report_General_Concepts.pdf

[26] C. E. Shannon, “A mathematical theory of communication,” The
Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[27] P. Muñoz, J. Troya, M. Wimmer, and A. Vallecillo, “Measuring
the fidelity of a physical and a digital twin using trace
alignments – Git repository,” 2023, accessed: October 13, 2024.
[Online]. Available: https://github.com/atenearesearchgroup/
fidelity-measure-for-dts

[28] ——, “Measuring the fidelity of a physical and a digital
twin using trace alignments – Zenodo permanent link,”
2023, accessed: October 13, 2024. [Online]. Available: https:
//doi.org/10.5281/zenodo.12527797

[29] D. A. Snow, Ed., Plant Engineer’s Reference Book, 2nd ed. Oxford:
Elsevier, 2003.

[30] S. H. Choi, S. J. Lee, and T. G. Kim, “Multi-fidelity modeling &
simulation methodology for simulation speed up,” in Proceedings
of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, ser. SIGSIM PADS ’14. New York, NY, USA: Associa-
tion for Computing Machinery, 2014, p. 139–150.

[31] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-based
specification environment for validating UML and OCL,” Sci.
Comput. Program., vol. 69, no. 1, pp. 27–34, 2007, Special issue on
Experimental Software and Toolkits.

[32] F. Büttner and M. Gogolla, “On OCL-based imperative lan-
guages,” Sci. Comput. Program., vol. 92, pp. 162–178, 2014.

[33] H. Feng, C. Gomes, C. Thule, K. Lausdahl, M. Sandberg, and P. G.
Larsen, “The incubator case study for digital twin engineering,”
2021. [Online]. Available: https://arxiv.org/abs/2102.10390

[34] “Example digital twin: The incubator,” 2023, accessed:
October 13, 2024. [Online]. Available: https://github.com/
INTO-CPS-Association/example_digital-twin_incubator

[35] Components101, “DHT22 Temperature and Humidity
Sensors specification,” 2018, accessed: October 13,
2024. [Online]. Available: https://components101.com/sensors/
dht22-pinout-specs-datasheet

[36] E. A. Lee and M. Sirjani, “What good are models?” in Formal
Aspects of Component Software. Cham: Springer International
Publishing, 2018, pp. 3–31.

[37] Tinkerkit, “Arduino Tinkerkit Braccio Robot,” 2021, accessed:
October 13, 2024. [Online]. Available: https://store.arduino.cc/
products/tinkerkit-braccio-robot

[38] M. U. Masood and M. Haghshenas-Jaryani, “A study on the
feasibility of robotic harvesting for chile pepper,” Robotics, vol. 10,
no. 3, p. 94, 2021.

[39] P. Muñoz, M. Wimmer, J. Troya, and A. Vallecillo, “Using trace
alignments for measuring the similarity between a physical and
its digital twin,” in Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems: Companion
Proceedings, MODELS 2022, Montreal, Quebec, Canada, October 23-
28, 2022. ACM, 2022, pp. 503–510.

[40] P. Muñoz, J. Troya, M. Wimmer, and A. Vallecillo,
“Measuring the fidelity of a physical and a digital twin
using trace alignments: Nxt lego mindstorms car,” 2023,
accessed: October 13, 2024. [Online]. Available: https:
//github.com/atenearesearchgroup/fidelity-measure-for-dts/
blob/main/docs/Technical_Report_NXT_Car.pdf

[41] G. Lugaresi, S. Gangemi, G. Gazzoni, and A. Matta, “Online
validation of simulation-based digital twins exploiting time series
analysis,” in 2022 Winter Simulation Conference (WSC), 2022, pp.
2912–2923.

[42] H. Sakoe and S. Chiba, “A dynamic programming approach to
continuous speech recognition,” in Proc. of the 7th International

https://www.digitaltwinconsortium.org/glossary/index.htm
https://www.digitaltwinconsortium.org/glossary/index.htm
https://ceur-ws.org/Vol-3620/mess23_paper01.pdf
https://blast.ncbi.nlm.nih.gov/
https://peters-research.com/index.php/elevate/
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Elevator.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Elevator.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Elevator.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_General_Concepts.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_General_Concepts.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_General_Concepts.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts
https://github.com/atenearesearchgroup/fidelity-measure-for-dts
https://doi.org/10.5281/zenodo.12527797
https://doi.org/10.5281/zenodo.12527797
https://arxiv.org/abs/2102.10390
https://github.com/INTO-CPS-Association/example_digital-twin_incubator
https://github.com/INTO-CPS-Association/example_digital-twin_incubator
https://components101.com/sensors/dht22-pinout-specs-datasheet
https://components101.com/sensors/dht22-pinout-specs-datasheet
https://store.arduino.cc/products/tinkerkit-braccio-robot
https://store.arduino.cc/products/tinkerkit-braccio-robot
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_NXT_Car.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_NXT_Car.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_NXT_Car.pdf

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SEPETEMBEER 2024 23

Congress on Acoustics, vol. 3. Budapest: Akadémiai Kiadó, 1971,
pp. 65–69.

[43] P. Muñoz, J. Troya, M. Wimmer, and A. Vallecillo,
“Measuring the fidelity of a physical and a digital twin
using trace alignments: Incubator technical report,” 2023,
accessed: October 13, 2024. [Online]. Available: https:
//github.com/atenearesearchgroup/fidelity-measure-for-dts/
blob/main/docs/Technical_Report_Incubator.pdf

[44] ——, “Measuring the fidelity of a physical and a digital
twin using trace alignments: Robotic arm technical report,”
2023, accessed: October 13, 2024. [Online]. Available: https:
//github.com/atenearesearchgroup/fidelity-measure-for-dts/
blob/main/docs/Technical_Report_Robotic_Arm.pdf

[45] H. Li, J. Liu, Z. Yang, R. W. Liu, K. Wu, and Y. Wan, “Adaptively
constrained dynamic time warping for time series classification
and clustering,” Information Sciences, vol. 534, pp. 97–116, Septem-
ber 2020.

[46] S. Salvador and P. Chan, “Toward accurate dynamic time warping
in linear time and space,” Intelligent Data Analysis, vol. 11, no. 5,
pp. 561–580, 2007.

[47] H. Sakoe and S. Chiba, “Dynamic programming algorithm op-
timization for spoken word recognition,” IEEE transactions on
acoustics, speech, and signal processing, vol. 26, no. 1, pp. 43–49, 1978.

[48] A. W.-C. Fu, E. Keogh, L. Y. H. Lau, C. A. Ratanamahatana,
and R. C.-W. Wong, “Scaling and time warping in time series
querying,” in Proceedings of the 31st International Conference on Very
Large Data Bases, ser. VLDB ’05. Trondheim, Norway: VLDB
Endowment, 2005, p. 649–660.

[49] O. Balci, “Validation, verification, and testing techniques through-
out the life cycle of a simulation study,” Ann. Oper. Res., vol. 53,
no. 1, pp. 121–173, 1994.

[50] J. Banks, Handbook of simulation - principles, methodology, advances,
applications, and practice. Wiley, 1998.

[51] T. Marquardt, C. Cleophas, and L. Morgan, “Indolence is fatal:
Research opportunities in designing digital shadows and twins
for decision support,” in 2021 Winter Simulation Conference (WSC),
2021, pp. 1–11.

[52] J. Ahlgren, K. Bojarczuk, S. Drossopoulou, I. Dvortsova, J. George,
N. Gucevska, M. Harman, M. Lomeli, S. M. M. Lucas, E. Meijer,
S. Omohundro, R. Rojas, S. Sapora, and N. Zhou, “Facebook’s
cyber–cyber and cyber–physical digital twins,” in Proceedings
of the 25th International Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1–9. [Online].
Available: https://doi.org/10.1145/3463274.3463275

[53] K. Worden, E. J. Cross, R. J. Barthorpe, D. J. Wagg, and P. Gardner,
“On digital twins, mirrors, and virtualizations: Frameworks for
model verification and validation,” ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part B: Mechanical Engineering,
vol. 6, no. 3, p. 030902, 2020.

[54] K. Bojarczuk, N. Gucevska, S. Lucas, I. Dvortsova, M. Harman,
E. Meijer, S. Sapora, J. George, M. Lomeli, and R. Rojas, “Mea-
surement challenges for cyber cyber digital twins: Experiences
from the deployment of facebook’s ww simulation system,” in
Proceedings of the 15th ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), ser. ESEM
’21. New York, NY, USA: Association for Computing Machinery,
2021.

[55] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Inferring hierar-
chical motifs from execution traces,” ser. ICSE ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 776–787.

[56] S. Wolny, A. Mazak, M. Wimmer, and C. Huemer, “Model-driven
runtime state identification,” in Proc. of EMISA’19, ser. LNI, vol.
P-304. Bonn: Gesellschaft für Informatik e.V., 2019, pp. 29–44.

[57] W. M. P. van der Aalst, Process Mining – Data Science in Action,
2nd ed. Berlin: Springer, 2016.

[58] G. V. Bard, “Spelling-error tolerant, order-independent pass-
phrases via the damerau-levenshtein string-edit distance metric,”
in Proceedings of the Fifth Australasian Symposium on ACSW Frontiers
- Volume 68, ser. ACSW ’07. AUS: Australian Computer Society,
Inc., 2007, p. 117–124.

[59] M. Camargo, M. Dumas, and O. González-Rojas, “Automated
discovery of business process simulation models from event logs,”
Decision Support Systems, vol. 134, p. 113284, 2020.

[60] H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” in 50 Years of Integer Programming 1958-2008 - From the Early

Years to the State-of-the-Art. Berlin, Heidelberg: Springer, 2010, pp.
29–47.

[61] G. Lugaresi, G. Aglio, F. Folgheraiter, and A. Matta, “Real-time
validation of digital models for manufacturing systems: a novel
signal-processing-based approach,” in 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE), 2019, pp.
450–455.

[62] L. Gong, B. Chen, W. Xu, C. Liu, X. Li, Z. Zhao, and L. Zhao,
“Motion similarity evaluation between human and a tri-co robot
during real-time imitation with a trajectory dynamic time warping
model,” Sensors, vol. 22, no. 5, p. 1968, 2022.

[63] J.-M. Jézéquel and A. Vallecillo, “Uncertainty-aware simulation
of adaptive systems,” ACM Trans. Model. Comput. Simul., vol. 33,
no. 3, pp. 8:1–8:19, 2023.

[64] H. M. Muctadir, D. A. M. Negrin, R. Gunasekaran, L. Cleophas,
M. van den Brand, and B. R. Haverkort, “Current trends in digital
twin development, maintenance, and operation: An interview
study,” CoRR, vol. abs/2306.10085, Jun. 2023.

Paula Muñoz is a PhD candidate at the Uni-
versity of Málaga. She graduated in Software
Engineering from the University of Málaga in
June 2019. Her research focuses on precisely
specifying and testing software systems using
models, as well as the validation of Digital Twins.
You can contact her at paulam@uma.es.

Manuel Wimmer is a full professor lead-
ing the Department of Business Informatics -
Software Engineering at the Johannes Kepler
University Linz. His research interests com-
prise foundations of software engineering tech-
niques and their application in domains such
as tool interoperability, software modernization,
as well as cyber-physical systems. For more
information, please visit https://www.se.jku.at/
manuel-wimmer/.

Javier Troya is Associate Professor at the Uni-
versidad de Málaga, Spain. Before, he was As-
sistant Professor at the Universidad de Sevilla,
Spain (2016-2020), and a post-doctoral re-
searcher in the TU Wien, Austria (2013-2015).
He obtained his International PhD with honors
at the Universidad de Málaga, Spain (2013).
His current research interests include MDE,
Software Testing and Digital Twins. For more
information, please visit https://javiertroyauma.
github.io/.

Antonio Vallecillo is a retired full professor
of software engineering at the University of
Málaga, working on systems modeling and
analysis. His research interests include open-
distributed processing, model-based software
engineering, and software quality. For more
information about his publications, research
projects, and activities, please visit http://www.
lcc.uma.es/~av.

https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Incubator.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Incubator.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Incubator.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Robotic_Arm.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Robotic_Arm.pdf
https://github.com/atenearesearchgroup/fidelity-measure-for-dts/blob/main/docs/Technical_Report_Robotic_Arm.pdf
https://doi.org/10.1145/3463274.3463275
paulam@uma.es
https://www.se.jku.at/manuel-wimmer/
https://www.se.jku.at/manuel-wimmer/
https://javiertroyauma.github.io/
https://javiertroyauma.github.io/
http://www.lcc.uma.es/~av
http://www.lcc.uma.es/~av

	Introduction
	Background
	Digital Twins and Fidelity
	Trace Alignment
	Trace Alignments
	Trace alignment algorithms
	Affine Gap

	Distance Measures

	Proposal
	Running example: An elevator
	System representation
	Comparison Function
	Trace alignment algorithm
	Fidelity metrics

	Parameter tuning
	Gap tuning
	MAD effect

	Assessing fidelity
	Fidelity indicators
	Multi-fidelity digital twins
	Additional synthetic scenarios

	Evaluation
	Demonstration Cases
	Incubator: Compare models
	Robotic arm: Multiple numerical attributes
	Lego Car: Boolean and enumerations

	Empirical Evaluation
	Comparison with other proposals (RQ.1)
	Time complexity and scalability analysis (RQ.2-3)

	Limitations and threats to validity

	Related work
	Validation of DTs
	Similarity measurements
	Trace analysis
	Online validation techniques

	Conclusions and future work
	References
	Biographies
	Paula Muñoz
	Manuel Wimmer
	Javier Troya
	Antonio Vallecillo

