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In smart Cyber-Physical Systems (sCPS), a critical challenge lies in task planning under uncertainty. There is a

broad body of work in the area with approaches able to individually deal with different classes of constraints

(e.g., ordering, structural) and uncertainties (e.g., in sensing, actuation, latencies). However, these uncertainties

are rarely independent and often compound, affecting the satisfaction of goals and other system properties in

subtle and often unpredictable ways. According to the Uncertainty Interaction Problem recently proposed in

the literature, approaches are needed to identify multiple sources of uncertainty and quantify their impact. In

this paper we deal with two types of uncertainty present in task-based sCPS, namely temporal availability
constraints and element reliability. The former refers to the availability of a given system element required to

perform a task, which may be unavailable for certain periods of time, while the latter is related to system

elements that may fail at some point with some probability. This paper presents an approach to consider

both uncertainties, employing genetic algorithms to incorporate them effectively into planning for deciding

how to best adapt the system to changes at run time. Our method is evaluated in the domains of electric

vehicle charging and healthcare robotics. Our evaluation shows that: (i) the proposed approach outperforms a

baseline mixed-integer linear programming (MILP) algorithm capable of generating optimal solutions in the

absence of uncertainty, providing more robust solutions to failures, changes in temporal availability, or both

sources of uncertainty combined; (ii) both sources of uncertainty have a strong and compound impact on the

quality of the solutions provided; and (iii) the proposed approach significantly reduces computational cost,

with respect to the MILP-based optimization.
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1 INTRODUCTION
Self-adaptive, smart Cyber-Physical Systems (sCPS) [4] are becoming increasingly prevalent in

various domains, such as healthcare, transportation, and industrial automation, among others. The

complexity and uncertainty inherent to sCPS pose significant challenges for their effective and

efficient operation. Indeed, uncertainty is an inherent property of any system that operates in a real

environment, which often includes interaction with physical elements or humans. There are some

proposals for representing uncertainty in software systems at a model level [46] and to deal with

it in different forms (objective, subjective, epistemic, aleatory) [45], for which different notations

and representations are used, such as mathematical and numerical models [37], probabilities [18],

Fuzzy set theory [41, 55], variability analysis [43] or risk assessment [40]. Also, several taxonomies

of uncertainty have been proposed in the context of self-adaptive systems [19, 30, 38, 39], and

a substantial body of work exists on methods to manage uncertainty [22]. These methods are

able to individually represent and mitigate uncertainties from various sources. However, these

uncertainties are rarely independent and often compound, affecting the satisfaction of goals and

other system properties in subtle and often unpredictable ways.

To address this gap, the Uncertainty Interaction Problem was introduced in [6, 11]. It highlights

the limited understanding about the specific ways in which uncertainties of different types and

from various sources are combined and, ultimately, affect the goals and other properties of CPS.

Representing the combination of multiple sources of unceratinty, analyzing the impact of their

emergent effects on the satisfaction of requirements, and mitigating them remain open challenges.

In our approach, we do not treat these sources of uncertainty independently. Instead, our method

incorporates them in a combined manner within the planning process, ensuring that scheduling

decisions take into account both sources of uncertainty.

Attaining satisfaction of system requirements in the presence of uncertainty is a challenge

for which autonomy and self-adaptation have been proved crucial over the last decade [51]. In

particular, the MAPE-K (Monitoring, Analysis, Planning, Execution and Knowledge) control loop

has been identified as an extraordinarily effective model for realizing self-adaptation in sCPS [3].

In fact, recent years have witnessed a remarkable growth of the body of work for automated

approaches to planning that can enable sCPS to make informed decisions and adapt their behavior in

an effectivemanner under prescribed levels of uncertainty, e.g. [5, 10, 16, 33]. Among these proposals,

we contributed in previous work [42], an approach to synthesize self-adaptation plans for sCPS

under uncertainty in temporal availability constraints. Indeed, many real-world scenarios involve

elements of the system that are available only during specific time periods. For instance, a robot may

need to conduct a task at a physical location that is not always accessible, or an electrical vehicle may

be available for charging at a station only during a limited time window. These temporal constraints

introduce an additional layer of complexity to the planning and decision-making process. Existing

methods often struggled to effectively incorporate this type of uncertainty, so we contributed

with a novel approach to automated planning that explicitly addresses the uncertainty in temporal

availability constraints in task-based sCPS scenarios. We explored the use of genetic algorithms [27]

to efficiently consider the space of possible plans to identify solutions that are not only feasible

given the uncertain time constraints, but also close-to-optimal with respect to a set of quantitative

objectives of the sCPS (e.g., cost, time).

Despite their effectiveness, a notable limitation of these approaches is the ignorance of multiple

sources of uncertainty. In fact, one of the challenges described in [11], namely Challenge E1:
Complementary uncertainty exploration, calls for the development of complementary uncertainty

exploration techniques that consider multiple sources of uncertainty with varying types and

degrees of impact. In this paper we contribute towards addressing this challenge by considering,
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together with the uncertainty associated with temporal availability constraints, another source

of uncertainty, namely element reliability (i.e., CPS elements may fail at some point with some

probability). For instance, a robot or electric vehicle chargers might be down for some time intervals

due to different failures, which inevitably affects the attainment of system goals. Thus, we study

how the interaction of both uncertainties (i.e., in temporal availability constraints and reliability)

affects system goals. To this end, we extend the formalization of the problem, algorithms, and

implementation described in [42], so that it can consider both sources of uncertainty.

To evaluate our approach, we apply it on two case studies that correspond to distinct domains,

namely a shared smart infrastructure for the charging of electric vehicles, and healthcare robotics.

For studying how the various uncertainties affect the system, we compare our implementation with

a baseline method to solve the planning problems that employs mixed-integer linear programming

(MILP) so that it guarantees a globally optimal solution in the absence of uncertainty.

We focus on two properties to evaluate our approach, namely effectiveness and efficiency, for

which we define three research questions (RQs):

• RQ1: Effectiveness. We aim to study how the different uncertainties, and their combination,

affect the systems. We divide this RQ into four subquestions:

– RQ1.1 How effective is our approach in comparison to an optimal algorithm with no

uncertainties considered?

– RQ1.2 How effective is our approach in comparison to an optimal algorithm under pre-

scribed levels of uncertainty in temporal availability constraints?

– RQ1.3 How effective is our approach in comparison to an optimal algorithm under pre-

scribed levels of uncertainty in elements reliability?

– RQ1.4 How effective is our approach in comparison to an optimal algorithm under pre-

scribed levels of uncertainty in temporal availability constraints and elements reliability?

• RQ2: Impact. How much do the different sources of uncertainty impact of system goals?

• RQ3: Efficiency. How efficient is our approach with respect to an optimal algorithm?

Our results demonstrate that, while the baseline approach fares better than our proposal under no

uncertainty, our proposed approach yields solutions that outperform the baseline under increasing

levels of uncertainty, rendering the system more resilient. This applies both to uncertainty in

temporal availability constraints, as well as to reliability. Moreover, the computational cost of our

approach is a fraction of the computational cost of the baseline, with time reductions above 70% for

large problem instances. Finally, our study indicates that the different sources of uncertainty have

a compound effect on system objectives, exhibiting an augmentation behavior (uncertainty sources

are strongly correlated but neither dominates the other) [6].

In the remainder of this paper, Section 2 introduces the motivating scenarios for our approach

and Section 3 formalizes the problem. Next, Section 4 introduces our approach, centered on the

planning stage of the MAPE-K loop, and Section 5 describes its evaluation, including threats to

validity. Section 6 discusses related work. Finally, Section 7 concludes the paper.

2 MOTIVATING SCENARIOS
We describe two motivating scenarios where multiple sources of uncertainty must be considered

simultaneously. These examples demonstrate how different types of uncertainty, such as temporal

availability constraints and element reliability, affect decision-making and increase the complexity

of planning
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2.1 Electric Vehicle Charging Infrastructure
Most electric vehicles (EVs) available in the market offer limited autonomy. For this reason, many

EV owners need to install home chargers, yet limited access to charging stations in shared parking

areas (e.g., at the workplace) still poses significant obstacles to electromobility. Shared EV charging

infrastructures can help to alleviate this problem, but are difficult to exploit in an efficient manner

due to factors such as limited vehicle availability (i.e., a vehicle may be available for charging only

during a limited time window), resource failures (e.g., a charger may fail from time to time), and

diverse energy needs (some users may need to cover longer distances than others to return home).

To address this situation and promote EV adoption, there is a pressing need for shared charging

stations capable of automatically planning the order and duration of the charging of multiple EVs

under uncertain and changing conditions.

To motivate our approach, we describe a scenario involving a parking lot at the Ada Byron

research building in the University of Malaga, where users park a variety of EVs with different

energy needs (Figure 1). Some of them only need to cover a few kilometers to commute back home

from work, while others need to cover longer distances.

Fig. 1. Electric vehicle charging infrastruc-
ture at the Ada Byron research building, Uni-
versity of Malaga.

The ability to adapt and optimize charging accord-

ing to individual user requirements and daily schedule

(available from a database updated periodically via an

app installed in the user’s mobile phone) is crucial to

ensure that everyone can use their electric vehicles con-

veniently and efficiently, without concerns about charger

availability. In this setting, the need for a robust and adap-

tive vehicle charging system becomes even more evident

when considering the unpredictability of real-life scenar-

ios, where the system may have to deal with chargers

unexpectedly going offline, vehicles arriving earlier or

later than specified in the user’s mobile app, and fluctu-

ating energy requirements due to unexpected travel needs. Concretely, the planning system should

generate feasible solutions (i.e., solutions that respect the constraints on EV availability and satisfy

the charging needs of all cars) while mimimizing the cost and timespan required to charge all cars.

To summarize, this scenario involves two key sources of uncertainty: (i) the temporal availability

of electric vehicles, which may arrive at charging stations earlier or later than expected, and (ii)

the failure probability of chargers, which may become unavailable due to technical issues. These

uncertainties should not be treated as independent; for example, it is necessary to take into account

in the planning process that, if a vehicle arrives late, the charger assigned at that point may fail

with a probability that is different from the failure probability at the intended arrival time of the

vehicle.

2.2 RoboMAX: Food Logistics
RoboMAX [2] is a repository of robotic mission adaptation exemplars co-designed by robotic

application researchers, developers, operators, and end-users. The repository captures key sources

of uncertainty, adaptation concerns, and other distinguishing characteristics that pose multiple

adaptation challenges.

Food Logistics is one of such mission adaptation exemplars in which the system should deliver

food from the kitchen to an inpatient room. The delivery is made on an order-by-order basis in

response to kitchen delivery requests. The food can be delivered into a room table by the robot

(requires a special manipulation robot skill) or the food can be fetched from the robot’s tray. Fetching
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from the robot tray requires cooperation with the inpatient, a companion, a nurse, or another robot.

Some inpatients could be unable to fetch the food from the tray, and a companion visitor or nurse

should be available at the moment of the delivery. The information about if a companion visitor or

nurse is able to retrieve the food from the tray during a given time period can be obtained based on

the inpatient record according to information about the patient and the presence of a companion

into the room. This information is subject to uncertainty, since companions could arrive or leave

inpatient rooms at different times from the ones stated in the inpatient record. Moreover, robots

may fail and become inoperative from time to time. In this scenario, robots should minimize the

disruption to inpatients by trying to avoid food delivery attempts when there is not a companion

or nurse available to receive the food, as well as the timespan required to deliver all food orders.

Summarizing, in this scenario, food delivery is subject to two sources of uncertainty: (i) the

availability of companions to assist patients in retrieving their meals, and (ii) the failure probability

of robots, which may become non-operational at any time. These uncertainties are not independent

and complicate the planning process. For instance, it is essential to take into consideration that if a

robot fails and arrives late to deliver a meal, a companion could be unexpectedly absent because she

had to leave early. This presence of multiple uncertainties requires a robust planning mechanism

that can handle the emergent effects of such disruptions effectively.

3 PROBLEM FORMALIZATION
A set 𝑅 = {𝑟1, . . . , 𝑟𝑛} of resources (e.g., robots, chargers) is deployed in a physical environment

and available to perform a set of tasks 𝑇 = {𝑡0, . . . , 𝑡𝑚} (e.g., charging, delivering food) for a set of
consumers 𝐶 = {𝑐1, . . . , 𝑐𝑙 } (e.g., EVs, patients).
However, tasks cannot be performed at all times, given that they have to be carried out in a

specific physical location and require the availability of resources and consumers, which may not

always be present. For instance, electric chargers and robots can sometimes be offline, vehicles are

only available during a given time window, and in a hospital setting, inpatient companions may

not always be present to receive the food delivered by a robot.

Definition 1 (Availability window). We define the availability window of a CPS element
𝑒 ∈ 𝐸 = {𝑅 ∪𝐶} as𝑊 : 𝐸 → R+

0
× R+, that is, the time period during which the element is available.

For any given element 𝑒 ∈ 𝐸, with𝑊 (𝑒) = (𝑡𝛼𝑒 , 𝑡𝜔𝑒 ), we refer to 𝑡𝛼𝑒 and 𝑡𝜔𝑒 as the availability start

time and availability end time of 𝑒 , respectively. Note that our problem formalization considers a
single availability window per CPS element for presentation clarity, but it can be trivially extended to
consider multiple windows.

The definition of availability window is described in deterministic terms. In the real world,

however, there is limited certainty about the actual availability window, so we also characterize the

availability of CPS elements in probabilistic terms.

Definition 2 (Availability probability). Let 𝑓𝑡★𝑒 (𝑡) be the probability density function (PDF) of
the availability start/end of an element 𝑒 , where ★ ∈ {𝛼,𝜔}:

𝑓𝑡★𝑒 (𝑡) =
1

𝜎𝑡★𝑒

√
2𝜋

exp

(
−
(𝑡 − 𝜇𝑡★𝑒 )

2

2𝜎2

𝑡★𝑒

)
,

where 𝜇𝑡★𝑒 is the mean and 𝜎𝑡★𝑒 is the standard deviation of the availability start/end (Gaussian)
distributions. The corresponding cumulative distribution functions (CDFs) are designated by:

𝐹𝑡★𝑒 (𝑡) =
∫ 𝑡

−∞
𝑓𝑡★𝑒 (𝑥) 𝑑𝑥 .
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Fig. 2. Example of probability availability function for an electric vehicle.

The probability that the CPS element is present on location at time 𝑡 , denoted as 𝑃↑𝑒 (𝑡), is then given
by the difference between the availability start (𝛼) and end (𝜔) CDFs:

𝑃↑𝑒 (𝑡) = 𝐹𝑡𝛼𝑒 (𝑡) − 𝐹𝑡𝜔𝑒 (𝑡).

Example 1. Figure 2 illustrates a sample timeline for the arrival-departure of an electric vehicle
𝑒 . The blue and green curves depict the probability density functions for the arrival and departure of
the vehicle (with means in 𝜇𝛼 = 7 and 𝜇𝜔 = 12, respectively). The dashed curve corresponds to the
probability of the vehicle being present over the timeline 𝑃↑𝑒 (𝑡). Note that the function peaks when the
arrival (availability start) CDF is maximal, but the departure (availability end) CDF is still close to
zero.

Definition 3 (Problem instance). A problem instance is characterized by a tuple (𝑅,𝐶, 𝐹↑𝐸 , 𝐹𝑋 ,
T,Λ,Θ,𝑂), where 𝑅 is a set of resources, 𝐶 is a set of consumers, 𝐹↑𝐸 is a set of consumer availability
probability functions for CPS elements in 𝐸, 𝐹𝑋 : 𝑅 × R2 → [0, 1] is a function that maps time
intervals to failure probabilities of resources, 𝑇 is a set of tasks, Λ : 𝑇 → 𝐶 is a function that maps
tasks to consumers, Θ ∈ R+ designates a time frame [0,Θ] during which tasks have to be completed,
and 𝑂 : 𝑆𝜐 → R𝑘 is a function that maps solutions (cf. Definition 5) of a problem instance 𝜐 to 𝑘
optimization criteria.

Definition 4 (Resource assignment). A resource assignment is characterized as a tuple (𝑟, 𝑡, 𝜃𝑠 , 𝜃𝑒 )
∈ 𝑅 ×𝑇 × R2 that allocates a resource 𝑟 to the execution of a task 𝑡 , which is to be carried out during
the time period [𝜃𝑠 , 𝜃 𝑓 ].

Definition 5 (Problem solution). A problem solution is a set of resource assignments 𝐴 in
which there is non-zero probability of the task resource and consumer being present (∀𝑎 ∈ 𝐴 • ∃𝜃 ∈
[𝑎.𝜃𝑠 , 𝑎.𝜃 𝑓 ], 𝑠 .𝑡 . 𝑃↑Λ(𝑎.𝑡 ) (𝜃 ) > 0 ∧ 𝑃↑𝑎.𝑟 (𝜃 ) > 0). We designate the set of possible problem solutions
for problem instance 𝜐 by 𝑆𝜐 .

Definition 6 (Problem). Let 𝑖 be a problem instance, and 𝑌 = {𝑦 ∈ R𝑘
: 𝑦 = 𝑖 .𝑂 (𝑠), 𝑠 ∈ 𝑆𝜐} be

the set of criterion vectors in R𝑘 that correspond to the mapping of solutions to optimization criteria
𝑖 .𝑂 . The planning problem consists in approximating the Pareto front of non-dominated solutions 𝑆★𝜐 :

𝑆★𝜐 = {𝑠 ∈ 𝑆𝜐 : 𝑖 .𝑂 (𝑠) ∈ 𝑃𝑎𝑟𝑒𝑡𝑜 (𝑌 )}, with𝑃𝑎𝑟𝑒𝑡𝑜 (𝑌 ) = {𝑦′ ∈ 𝑌 : {𝑦′′ ∈ 𝑌 : 𝑦′′ ≻ 𝑦′, 𝑦′ ≠ 𝑦′′} = ∅}.

4 APPROACH
In this section, we first introduce an overview of the run-time adaptation loop that frames the

operational context for our approach (Section 4.1). Next, we present a planning approach that does

not consider uncertainty sources, and is based on mixed-integer linear programming (Section 4.2).

This approach yields optimal results in the absence of uncertainty and is used as baseline for our
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Fig. 3. Run-time context overview of our approach.

evaluation (cf. Section 5). Finally, we describe the details of our planning approach under interacting

sources of uncertainty (Section 4.3).

4.1 Operational Context
Our approach is designed to work at run-time in the planning stage of the adaptation loop of

MAPE-K based systems. Figure 3 shows the operational context of our approach.

4.1.1 Knowledge. Incorporates various models that contain information about the tasks to be

performed, system goals (e.g., optimization objectives – cf.𝑂 in Definition 6), resource and consumer

availability – cf. Definition 1), as well as system and environment information. We assume that all

these models are continually updated at run-time (cf. monitoring and analysis), except for the one

capturing system goals, which we assume to be fixed.

4.1.2 Monitor. The CPS and its environment, including elements such as consumers (e.g., EVs,

people) and resources (e.g., chargers, robots) are monitored on an ongoing basis through sensors.

Updated information is placed 1 in the system and environment model. Moreover, information

about CPS element availability that resides in CPS data sources is also 1 continually monitored

and incorporated into the element availability model. Relevant data sources to extract element

availability information are for instance, the database updated through the mobile app in the EV

charging scenario, and the inpatient record database in the RoboMax food logistics scenario.

4.1.3 Analyze. During analysis, the system 2 checks whether there are any deviations between the

information about expected element availability in the knowledge base and information monitored

from the system and environment at run-time (e.g., whether a given EV that should be on location

for charging is not actually available). If such deviations exist, the planning stage is triggered for

replanning.

4.1.4 Plan. If planning is triggered, a new planning problem instance is created 3 . The process

to create the instance uses information from all four models and is built similarly to the previous

problem instance (i.e., following Definition 3), but removing tasks, resources, and consumers that

are scheduled to participate in a task and unavailable, or that are already participating in a task.

The details of planning, which is the focus of our approach, are described in Section 4.3.

4.1.5 Execution. Once a plan is generated 4 (cf. Definition 5), it is enacted through effectors at

the managed subsystem level.
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In the remainder of this section, we first describe in detail an algorithm based on mixed-integer

linear programming (MILP) that we have developed to solve our problemwhen temporal availability

constraints are known with certainty (Section 4.2), and follow with a description of our genetic

algorithm to solve the problem under uncertainty in temporal availability constraints (Section 4.3)

and element reliability is guaranteed.

4.2 Planning in the Absence of Uncertainty
This section introduces an algorithm that solves planning with well-defined temporal availability

constraints (cf. Definition 1) and no element failures (cf. Definition 3) in an optimal fashion.

Algorithm 1 provides as output a problem solution as a set of resource assignments according

to Definition 5, and receives as input a deterministic problem instance, which is equivalent to the

one described in Definition 3, but including deterministic availability windows of resources and

consumers, instead of their availability probability functions:

Definition 7 (Deterministic problem instance). A deterministic problem instance is a tuple
(𝑅,𝐶,𝑊 ,𝑇 ,Λ,Θ,𝑂), where 𝑅 is a set of resources, 𝐶 is a set of consumers,𝑊 maps CPS elements in 𝐸

to their availability windows,𝑇 is a set of tasks, Λ : 𝑇 → 𝐶 is a function that maps tasks to consumers,
Θ ∈ R+ designates a time frame [0,Θ] during which tasks have to be completed, and 𝑂 : 𝑆𝜐 → R𝑘 is
a function that maps solutions of a problem instance 𝜐 to 𝑘 optimization criteria.

To solve the linear programming problem, we divide the timeline into a discrete set of time slots

according to a time granularity parameter 𝑡𝑔. For instance, if we consider the timeline to be one

day and set 𝑡𝑔 = 1 ℎ𝑜𝑢𝑟 , we have 24 slots that we can refer to by their indexes (1..24).

Definition 8 (Linear programming problem instance). A linear programming problem in-
stance (𝑋,𝑂, 𝜌) is characterized by a set of binary decision variables 𝑋 : 𝑅 ×𝐶 × N ← {0, 1} that
specify whether a resource 𝑟 ∈ 𝑅 is assigned to a consumer 𝑐 ∈ 𝐶 during a given time slot 𝑖 ∈ N, a
function 𝑂 : 𝑆𝜐 → R𝑘 that maps solutions of a problem instance 𝜐 to 𝑘 optimization criteria, and a set
of constraints 𝜌 that apply to valid problem solutions.

Based on the deterministic problem instance 𝑖 received as input, the algorithm progressively

builds a linear programming problem instance 𝛾 (initialized in line 3), that incorporates a set

of binary decision variables to express the assignment of a consumer to a resource during a

given time slot (initialized in line 4, cf. Definition 8), and the set of optimization objectives from

the deterministic problem instance 𝑖 .𝑂 . Initially, the set of constraints 𝛾 .𝜌 is empty (line 3), and

incorporates a constraint capturing that no two assignments can involve the same resource during

the same time slot (line 5). Then, the set of constraints is further extended to incorporate constraints

that capture that for every resource, consumer, and timeslot, the fact that a consumer and a resource

are allocated together to a given timeslot implies that the timeslot should be within the availability

windows of both the resource and the consumer (line 9). In line 9, function 𝑠𝑙𝑜𝑡𝑠 : 𝑊 → P(N)
returns the set of slots that fall within the availability window𝑤 of a resource or consumer:

𝑠𝑙𝑜𝑡𝑠 (𝑤) = {𝑛 ∈ {1, . . . , ⌈Θ
𝑡𝑔
⌉} | (𝑛 − 1) · 𝑡𝑔 ≥ 𝑤.𝑡𝛼 ∧ 𝑛 · 𝑡𝑔 ≤ 𝑤.𝑡𝜔 }

The algorithm then generates the solution to the linear programming problem instance 𝛾 (line 13),

where function 𝑠𝑜𝑙𝑣𝑒 abstracts the underlying algorithm used to return MILP problem solutions

(for which different solvers can be used, cf. Section 5.1).

The last part of the algorithm (lines 15-22) maps decision variables in 𝛾 .𝑋 to a problem solution

in terms of resource assignments (cf. definitions 4 and 5). To achieve this, an initially empty set

of assignments 𝐴 is created (line 14), and then progressively extended by iterating over all the
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Algorithm 1: Uncertainty-Agnostic Planning (Mixed-Integer Linear Programming).

1 Input: Deterministic problem instance 𝑖 = (𝑅,𝐶,𝑊 ,𝑇 ,Λ,Θ,𝑂 ) (cf. Definition 7).

2 Output: A problem solution assigning task to resources and consumers (cf. Definition5).

3 𝛾 ← (𝑋 = ∅,𝑂 = 𝑖 .𝑂, 𝜌 = ∅)
4 𝛾 .𝑋 ← {(𝑐, 𝑟, 0) ↦→ 0 | 𝑐 ∈ 𝑖 .𝐶, 𝑟 ∈ 𝑖 .𝑅}
5 𝛾 .𝜌 ← {∀𝑥, 𝑥 ′ ∈ 𝛾 .𝑋 • 𝑥.𝑟 = 𝑥 ′ .𝑟 ⇔ (𝑥 = 𝑥 ′ ∨ 𝑥.𝑠 ≠ 𝑥 ′ .𝑠 ) }
6 foreach 𝑟 ∈ 𝑖 .𝑅 do
7 foreach 𝑐 ∈ 𝑖 .𝐶 do
8 foreach 𝑠 ∈ {1, . . . , ⌈ Θ

𝑡𝑔
⌉ } do

9 𝛾 .𝜌 ← 𝛾 .𝜌 ∪ {𝛾 .𝑋 (𝑐, 𝑟, 𝑠 ) = 1⇒ 𝑠 ∈ 𝑠𝑙𝑜𝑡𝑠 (𝑖 .𝑊 (𝑟 ) ) ∩ 𝑠𝑙𝑜𝑡𝑠 (𝑖 .𝑊 (𝑐 ) ) }
10 end
11 end
12 end
13 𝑠𝑜𝑙𝑣𝑒 (𝛾 )
14 𝐴← ∅
15 foreach 𝑥 ∈ 𝛾 .𝑋 do
16 if ∄ 𝑎 ∈ 𝐴 • 𝑎.𝑟 = 𝑥.𝑟 ∧ 𝑎.𝑡 = Λ−1 (𝑥.𝑐 ) then
17 𝐴← 𝐴 ∪ { (𝑥.𝑟,Λ−1 (𝑥.𝑐 ), [𝑥.𝑠 · 𝑡𝑔, (𝑥.𝑠 + 1) · 𝑡𝑔 ] ) }
18 end
19 else
20 𝑎.𝜃𝑠 ←𝑚𝑖𝑛 (𝑎.𝜃𝑠 , 𝑥 .𝑠 · 𝑡𝑔 )
21 𝑎.𝜃 𝑓 ←𝑚𝑎𝑥 (𝑎.𝜃 𝑓 , 𝑥 .𝑠 · 𝑡𝑔 )
22 end
23 end
24 return 𝐴

decision variables 𝑥 (line 15). For each iteration, if there is not an assignment 𝑎 in 𝐴 that coincides

in resource and consumer with those of 𝑥 (line 16), we initialize an assignment with a time interval

that coincides with the upper and lower limits of the time slot for 𝑥 (line 17). Otherwise (i.e., there

is an assignment in 𝐴 that coincides with 𝑥 in resource and consumer), we update the time values

of the assignment to incorporate the new time slot within the assignment’s time window to expand

it further (lines 20-22). The algorithm guarantees that correct solutions with no gaps between slot

assignments will be returned (line 24), given that we are assuming a single availability window for

elements in the CPS, as discussed in Section 3.

4.3 Planning under Uncertainty in Temporal Availability Constraints and Element
Reliability

Once we have presented how to solve a simplified version of our problem in which temporal avail-

ability constraints are well known and element reliability is guaranteed, in this section we describe

a genetic algorithm capable of providing solutions under uncertainty arising from: (i) temporal

availability constraints, (ii) reliability issues derived from resource failures, and (iii) a combination

of the two previous sources of uncertainty.

4.3.1 Main Planning Algorithm. Algorithm 2 provides as output a problem solution as a set of

resource assignments according to Definition 5, and receives as input a problem instance (cf.

Definition 3), as well as a set of parameters to control the behavior of the genetic algorithm that

includes: population size 𝑠𝑝𝑜𝑝 , the maximum number of generations 𝑔𝑚𝑎𝑥 , the parent selection and

mutation rates 𝑟𝑠𝑒𝑙 and 𝑟𝑚𝑢𝑡 , as well as the number of samples to generate for the evaluation of

fitness of individuals (𝜅 for the number of variants with respect to consumer-resource availability,
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and 𝜅𝑋 for the number of variants related to resource failures), which are discussed in more detail

later in this section.

The algorithm starts by initializing a population 𝑃 (initially empty, line 4), and populating it

with individuals that are formed as a set of assignments 𝐴 of the form (𝑟, 𝑡, 𝜃𝑠 , 𝜃 𝑓 ) for every task

in the problem instance (i.e., in 𝑖 .𝑇 ), where resource 𝑟 is randomly picked (line 8), and the time

bounds for the assignment are also randomly picked (through function 𝑟𝑛𝑑𝑤 : 𝑅×𝐶 → R≥0) among

values that respect the temporal availability constraints of resource 𝑟 and the consumer associated

with task 𝑡 (i.e., 𝑖 .Λ−1 (𝑡)). Concretely, for a pair resource-consumer (𝑟, 𝑐), function 𝑟𝑛𝑑𝑤 generates

a random value in the interval [𝑚𝑖𝑛(𝑓𝑡𝛼𝑟 .𝜇, 𝑓𝑡𝛼𝑐 .𝜇),𝑚𝑎𝑥 (𝑓𝑡𝜔𝑟 .𝜇, 𝑓𝑡𝜔𝑐 .𝜇)]. Note that the invocation to

𝑟𝑛𝑑𝑤 to obtain a value for 𝜃 𝑓 (line 10) is constrained to yield values higher than that of 𝜃𝑠 (line 9).

Algorithm 2: Planning under uncertainty (Genetic Algorithm).

1 Inputs: Problem instance 𝑖 = (𝑅,𝐶, 𝐹↑𝐸 ,𝑇 ,Λ,Θ,𝑂 ) (cf. Definition 3); Population size 𝑠𝑝𝑜𝑝 ; Maximum number of

generations 𝑔𝑚𝑎𝑥 ; Parent selection rate 𝑟𝑠𝑒𝑙 ; Mutation rate 𝑟𝑚𝑢𝑡 ; Number of samples for probabilistic evaluation

of resource-consumer availability 𝜅; Number of samples for probabilistic evaluation of resource failures 𝜅𝑋 .

2 Output: A problem solution assigning task to resources and consumers (cf. Definition5).

3 GA(𝑖, 𝑠𝑝𝑜𝑝 , 𝑔𝑚𝑎𝑥 , 𝑟𝑠𝑒𝑙 , 𝑟𝑚𝑢𝑡 , 𝜅 ) :
4 𝑃 ← ∅
5 foreach 𝑖𝑛𝑑 ∈ {1, . . . , 𝑠𝑝𝑜𝑝 } do
6 𝐴← ∅
7 foreach 𝑡 ∈ 𝑖 .𝑇 do
8 𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑖 .𝑅)
9 𝜃𝑠 ← 𝑟𝑛𝑑𝑤 (𝑖 .𝐹↑ (𝑟 ), 𝑖 .𝐹↑ (𝑖 .Λ−1 (𝑡 ) )

10 𝜃 𝑓 ← 𝑟𝑛𝑑𝑤 (𝑖 .𝐹↑ (𝑟 ), 𝑖 .𝐹↑ (𝑖 .Λ−1 (𝑡 ) ), 𝑠 .𝑡 . 𝜃 𝑓 > 𝜃𝑠

11 𝐴← 𝐴 ∪ { (𝑟, 𝑡, 𝜃𝑠 , 𝜃 𝑓 ) }
12 end
13 𝑃 ← 𝑃 ∪ {𝐴}
14 end
15 𝑅𝐹𝑆 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝐹𝑆 (𝑖, 𝜅𝑋 )
16 foreach 𝑔𝑒𝑛 ∈ {1, . . . , 𝑔𝑚𝑎𝑥 } do
17 𝐹𝑃 ← {𝑝 ↦→ ⟨0⟩𝑘 | 𝑝 ∈ 𝑃 }
18 foreach 𝑝 ∈ 𝑃 do
19 𝐹𝑃𝜅 ← ∅
20 for 𝑠𝑎𝑚𝑝 ∈ {1, . . . , 𝜅 } do
21 𝑝𝜅 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝜅 (𝑝 )
22 𝑝′𝜅 ← 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒 (𝑝𝜅 , 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑅𝐹𝑆 ) )
23 𝐹𝑃𝜅 ← 𝐹𝑃𝜅 ∪ {𝑝′𝜅 ↦→ 𝑖 .𝑂 (𝑝′𝜅 ) }
24 end
25 𝐹𝑃 [𝑝 ] ←𝑚𝑒𝑎𝑛 (𝐹𝑃𝜅 )
26 end
27 𝑃𝑠𝑒𝑙 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝐹𝑃 )
28 𝑃 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑃𝑠𝑒𝑙 )
29 𝑃 ←𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑃 )
30 end
31 return {𝑝 ∈ 𝑃 : 𝑖 .𝑂 (𝑝 ) ∈ 𝑃𝑎𝑟𝑒𝑡𝑜 (𝐹𝑃 ) }

Once the initial population has been built, the algorithm generates a set of resource failure
schedules (function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝐹𝑆 , line 15), each of which captures a potential scenario of resource

failures throughout the execution timeline.
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Definition 9 (Resource Failure Schedule). Given a problem instance 𝑖 = (𝑅,𝐶, 𝐹↑𝐸, 𝐹𝑋 ,𝑇 , Λ,
Θ, 𝑂), a resource failure schedule 𝑅𝐹𝑆 ⊆ 𝑖 .𝑅 × [R≥0,R≥0]

⌈ 𝑖 .Θ
𝑡𝑔
⌉ is a set of assignments of resources to

sets of time slots in which the resource is assumed to be in a failed state (and therefore not usable).

This set of time slots in which resources are in a failed state will be used in the probabilistic

evaluation of the fitness function, within the main loop of the algorithm, which is described in the

remainder of this section. Section 4.3.2 provides the details of resource failure schedule generation.

The main loop of the algorithm iterates over a maximum number of generations 𝑔𝑚𝑎𝑥 (lines

16-29) by evaluating the current population of assignments (lines 17-26), and then selecting the

parents (line 27) to generate the offspring for the next generation (line 28 crossover, and line 29

mutation). We provide details about these stages of the algorithm in the following.

Concerning evaluation of individuals in the population (lines 17-29), the process begins by

creating a dictionary 𝐹𝑃 that associates every individual in the population 𝑝 ∈ 𝑃 with a zero-vector

of 𝑘 real numbers to store the fitness of 𝑝 along the 𝑘 optimization objectives of the problem

instance (𝑖 .𝑂). Then, for every individual in the population, we generate 𝜅 samples that capture

variants of 𝑝 in which the time period for each assignment is generated according to the probability

density functions of the start (𝑓𝑡𝛼 ) and end (𝑓𝑡𝜔 ) of the availability for a given resource or consumer.

Hence, if we let𝐴 ⊆ 𝑅 ×𝑇 ×R2
be the set of possible assignments in a solution, function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝜅 :

P(𝐴) → P(𝐴) takes in a set of assignments and returns a different set of assignments, where each

one of them is obtained by leaving the resource and task assigned unchanged, and modifying the

timeframes by sampling according to the maximum variance of the start and end of the availability

of the resource and consumer involved in the assignment:

𝑔𝑒𝑛𝜅 (𝑟, 𝑡, 𝜃𝑠 , 𝜃 𝑓 ) = (𝑟, 𝑡, 𝑠𝑝𝑙 (𝜃 .𝑠, 𝜎2

𝛼 ), 𝑠𝑝𝑙 (𝜃 𝑓 , 𝜎2

𝜔 )),with 𝜎2

★ =𝑚𝑎𝑥 (𝑓𝑡★𝑟 .𝜎
2, 𝑓𝑡★

𝑖 .Λ−1 (𝑡 )
.𝜎2),★ ∈ {𝛼,𝜔}

In the expression above, function 𝑔𝑒𝑛𝜅 returns an assignment in which the start and end times (𝜃𝑠
and 𝜃 𝑓 , respectively) are generated based on a sample from a Gaussian distribution (function 𝑠𝑝𝑙 ,

which takes in a mean and a variance as arguments).

At this stage, the 𝜅 samples have been generated without any awareness about potential resource

failures. Hence, we further modify each of the generated samples to avoid including consumer-

resource assignments that overlap with failure periods of resources as specified in 𝑅𝐹𝑆 (function

𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒 , line 22). Each sample is modified according to one of the resource failure schedules

contained in 𝑅𝐹𝑆 , which is randomly drawn by function 𝑠𝑒𝑙𝑒𝑐𝑡 . We provide further details about

the definition of function 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒 in Section 4.3.3.

The algorithm has been modified to handle two types of uncertainty in a structured manner.

During the evaluation and selection phases, both uncertainty factors are consideredwhen generating

and evaluating solutions. Unlike the previous version of our work [42], where uncertainty was

handled in isolation, the new approach systematically mitigates both types by incorporating them

into the fitness evaluation and adaptation process. This is achieved through the generateRFS
function (cf. Algorithm 3), which accounts for resource failures, and the consolidate function (cf.

Algorithm 4), which ensures feasible assignments by adapting to these failures.

While the algorithm handles uncertainty sources in a combined manner, this does not imply

independence. The probabilistic evaluation of task assignments (lines 21-22 of the algorithm)

ensures that both uncertainty sources influence scheduling decisions, implicitly capturing their

interaction within the planning process.

When each of the 𝜅 samples is generated for each individual 𝑝 , its fitness along the 𝑘 optimization

objectives is stored in 𝐹𝑃𝜅 (line 23). Once all the samples are generated and evaluated, we assign as

the fitness of the individual 𝑝 , the mean of the fitness of all samples (individually, for each of the 𝑘

optimization objectives – function𝑚𝑒𝑎𝑛, line 25).
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Once all the individuals in the population have been evaluated, the algorithm selects the 𝑟𝑠𝑒𝑙
top-most individuals in lexicographical order (function 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, line 27). Then, the algorithm

generates the next population by applying the 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 : 𝐴 ×𝐴→ 𝐴 ×𝐴 operator (line 28), which

combines individuals by taking the start time of one parent, and the end time of another one:

𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ((𝑟1, 𝑡1, 𝜃𝑠1, 𝜃 𝑓 1), (𝑟2, 𝑡2, 𝜃𝑠2, 𝜃 𝑓 2)) = ((𝑟1, 𝑡1, 𝜃𝑠2, 𝜃 𝑓 1), (𝑟2, 𝑡2, 𝜃𝑠1, 𝜃 𝑓 2))

For𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 : 𝐴→ 𝐴 (line 29), we apply a change to the start or end time of the assignment, by

incrementing (or decrementing) it by an amount of time randomly generated, so that the result

always has to satisfy the constraint that the start and end time of the assignment cannot go beyond

the mean of the probability density function of the resource and consumer availability, i.e.:

𝜃 ′𝑠 ≥ 𝑚𝑎𝑥 (𝑓𝑡𝛼𝑟 .𝜇, 𝑓𝑡𝛼
𝑖.Λ−1 (𝑡 )

.𝜇) ∧ 𝜃 ′
𝑓
≤ 𝑚𝑖𝑛(𝑓𝑡𝜔𝑟 .𝜇, 𝑓𝑡𝜔

𝑖.Λ−1 (𝑡 )
.𝜇).

Finally, the algorithm finishes by returning the set of non-dominated solutions in the population

(line 31 – cf. Definition 6).

4.3.2 Generation of Resource Failure Schedules. Algorithm 3 creates a set of failure schedules for

resources in the system. It receives as input a problem instance, a number of failure schedule

samples to generate 𝜅𝑋 , and a time granularity parameter 𝑡𝑔 (cf. Definition 7). The algorithm starts

by creating an empty set of schedules 𝑅𝐹𝑆 (line 3), to which it adds each of the failure schedules

𝑅𝐹 generated (lines 5-14). Each failure schedule is generated by iterating over the different time

slots starting at each time instant 𝜃 (line 7) in the timeline [0, 𝑖 .Θ], and determining whether for

that slot, there exists a failure probability defined in 𝑖 .𝐹𝑋 (line 8). If that is indeed the case, then the

algorithm generates a boolean value that determines whether the resource 𝑟 is in a failure state

during the current time slot (using function 𝑠 𝑓 𝑟 : [0, 1] → B, which employs the failure probability

of 𝑟 in 𝑖 .𝐹𝑋 ). If the value returned by 𝑠 𝑓 𝑟 is true, then the slot is added to 𝑅𝐹 as one in which the

resource 𝑟 has failed.

Algorithm 3: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝐹𝑆 : Resource Failure Schedule Generation.
1 Inputs: Problem instance 𝑖 = (𝑅,𝐶, 𝐹↑𝐸 , 𝐹𝑋 ,𝑇 ,Λ,Θ,𝑂 ) (cf. Definition 3); Number of samples for probabilistic

evaluation 𝜅𝑋 ; Time granularity parameter 𝑡𝑔 .

2 Output: A list of failure times for resources in 𝑖 .𝑅, where each element is defined over 𝑅 × [R≥0,R≥0 ]
⌈ 𝑖 .Θ𝑡𝑔 ⌉

.

3 𝑅𝐹𝑆 ← ∅
4 foreach {1, . . . , 𝜅𝑋 } do

5 𝑅𝐹 ← {𝑟 ↦→ ⟨⟩ ⌈
𝑖 .Θ
𝑡𝑔
⌉ | 𝑟 ∈ 𝑖 .𝑅}

6 foreach 𝑟 ∈ 𝑖 .𝑅 do
7 foreach 𝜃 ∈ {0, 𝑡𝑔 . . . , 𝑖 .Θ − 𝑡𝑔 } do
8 if ∃𝑓𝑋 ∈ 𝑖 .𝐹𝑋 • 𝑓𝑋 .𝜃𝑠 ≤ 𝜃 ≤ 𝑓𝑋 .𝜃 𝑓 ∧ 𝑓𝑋 .𝑟 = 𝑟 then
9 if 𝑠 𝑓 𝑟 (𝑓𝑋 (𝑟, [𝜃, 𝜃 + 𝑡𝑔 ] ) ) then
10 𝑅𝐹 [𝑟 ] ← 𝑅𝐹 [𝑟 ] ∪ { [𝜃, 𝜃 + 𝑡𝑔 ] }
11 end
12 end
13 end
14 end
15 𝑅𝐹𝑆 ← 𝑅𝐹𝑆 ∪ {𝑅𝐹 }
16 end
17 return 𝑅𝐹𝑆
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Algorithm 4: 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒 : Consolidation of resource-consumer assignments.

1 Inputs: Resource failure schedule 𝑅𝐹𝑆 , set of resource-consumer assignments 𝐴 of the form (𝑟, 𝑡, 𝜃𝑠 , 𝜃 𝑓 ) (cf.
Algorithm 2).

2 Output: A list of modified resource-consumer assignments 𝐴′ , s.t. ∀𝑎′ ∈ 𝐴′, 𝑎′ .𝑟 ∉ 𝑑𝑜𝑚 (𝑅𝐹𝑆 ) .
3 𝐴′ ← ∅
4 𝑅𝐴𝑉 = {𝑟 ∈ 𝑅 | 𝑟 ∈ ⋃

𝑎∈𝐴
𝑎.𝑟 }

5 foreach 𝑎 ∈ 𝐴 do
6 foreach 𝑟 𝑓 𝑠 ∈ 𝑅𝐹𝑆 do
7 foreach 𝜃 ∈ 𝑟 𝑓 𝑠 [𝑎.𝑟 ] do
8 if 𝑎.𝜃𝑠 ≤ 𝜃 ≤ 𝜃 𝑓 then
9 𝑎.𝑟 ← 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑅𝐴𝑉 )

10 𝑅𝐴𝑉 ← 𝑅𝐴𝑉 \{𝑎.𝑟 }
11 end
12 end
13 end
14 𝐴′ ← 𝐴′ ∪ {𝑎}
15 end
16 return 𝐴′

4.3.3 Consolidation of Resource-consumer Assignments. Algorithm 4 transforms a set of resource-

consumer assignments 𝐴 that may contain assignments including resources prone to fail (as

specified in a resource failure schedule 𝑅𝐹𝑆), into a new set of assignments𝐴′ that does not contain
any resources in 𝑅𝐹𝑆 . To that end, it starts by determining the set of available resources 𝑅𝐴𝑉 (those

not included in any of the assignments of𝐴, line 4). Next, for each of the assignments in𝐴, it checks

whether any of the entries in the 𝑅𝐹𝑆 contains a time slot in which the resource is supposed to fail

that overlaps with the time of the assignment (lines 7-8). If that is indeed the case, the algorithm

randomly reassigns (function 𝑠𝑒𝑙𝑒𝑐𝑡 , line 9) the consumer in the assignment to a new resource

among the available ones (also removing it from the available resource set, lines 9-10).

5 EVALUATION
We evaluate our approach with the objective of: Assessing its effectiveness (RQ1) under four
different types of scenario that include: (RQ1.1) no uncertainty (well-known temporal availability

constraints and no resource failures), (RQ1.2) uncertainty in temporal availability constraints,

(RQ1.3) resource failures, and (RQ1.4) a combination of prescribed levels of uncertainty in temporal

availability constraints and resource failures; Determining impact of the different sources of
uncertainty on the satisfaction of system goals (RQ2); and Assessing its efficiency (RQ3).

In our evaluation, we define effectiveness as the system’s ability to generate plans that successfully

achieve the desired goals under uncertainty. The specific metrics for effectiveness vary by case study.

In the EV charging infrastructure problem, the two objectives are minimizing both the timespan

required to charge all EVs, as well as the overall economic cost of charging, which may fluctuate,

depending on the time of the day. In the RoboMax food logistics problem, the two objectives involve

minimizing the timespan required to deliver all food trays, as well as the number of disruptive

events in which the robot attempts to deliver the food to an inpatient room while a companion is

not present to receive it.

We define efficiency as the computational cost required to compute a valid plan. This is measured

as the total execution time of the planning algorithm for a given problem instance.
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5.1 Experimental Setup
To obtain the data for our evaluation, we performed experiments that compare our GA-based

solution (cf. Section 4.3) with an implementation of the MILP-based solution described in Section 4.2,

which we employ as baseline. The experiments were carried out on an ASUS ExpertBook laptop

equipped with an Intel Core i7-1165G7 processor, 16GB of RAM, and a 512GB SSD, running

Windows 11. The implementation was developed and executed in Visual Studio Code, where the

necessary code was written to simulate the experimental conditions. While the full code and dataset

are available [44], we summarize the key aspects here to ensure clarity and completeness. The

implementation of our GA-based solutionwas carried out using Pythonwith numpy v2.26.2, whereas
our MILP-based implementation was developed also with Python and the linear programming

modeler Pulp v2.7.0, using CBC as a solver. All the code and data required to run the experiments

is accessible from [44].

We conducted different sets of experiments for each of the case studies described in Section 2,

instantiating the general problem formalized in Section 3 for each of the domains according to the

mapping provided in Table 1.

Table 1. Mapping of our CPS problem to different domains.

Concept EV Charging Infrastructure Robomax: Food Logistics

Resource Charger Robot

Consumer Electric Vehicle Patient

Task Charging EV Serving inpatient food

Constraint EV on location and available for charging Companion at inpatient room

Data source DB updated via app Inpatient record

Objectives Timespan (min.) Timespan (min.)

Cost of charge (min.) #Disruptions (min.)

A set of tests is conducted for each problem size and case study, considering different variances

in consumer availability times and varying probabilities of resource failures. For each problem,

we considered increasing instance sizes in the set {(2, 20), (4, 40), (8, 80), (16, 160)}, where every
couple ( |𝑅 |, |𝐶 |) designates the size of the set of reources and consumers of the problem instance,

respectively.

For every set of experiments, and problem instance, we run our MILP baseline once (because it

always yields the same result), and our GA-based algorithm 30 times for statistical significance.

5.2 Results
(RQ1) Effectiveness. To determine the effectiveness of our approach, we performed two sets of

experiments comparing how effective MILP and our GA were in problem instances of increasing

size (cf. Section 5.1) both in the EV charging infrastructure and in the RoboMax instantiations of

the problem.

(RQ1.1) How effective is our approach in comparison to an optimal algorithm with no uncertainties
considered?

To answer this question, we performed a set of experiments in which the results of the algorithms

were evaluated under a deterministic environment in which the availability of resources and

consumers coincided exactly with their availability windows provided as input to the planning,

and resources were failure-free. Figure 4 illustrates the results that compare the effectiveness of

our GA-based approach with the MILP baseline .
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Fig. 4. Effectiveness of our approach vsMILP baseline (no uncertainty ): EV charging (top), RoboMax (bottom).

One of the first things that can be observed in the top of the figure (EV charging infrastructure),

is that the MILP baseline almost always outperforms the GA both in terms of timespan and cost

minimization, because it is providing an optimal solution to the problem (that also explains that

the MILP-based results are always the same and not spread out like the ones yielded by the GA).

One notable exception to the dominant trend of the MILP is the disruption metric in two of the

four problem instances of RoboMax (Figure 4, bottom), which is due to the fact that the algorithms

are not explicitly optimizing to minimize this metric (rather, the minimization of disruption in this

case is derived from the fact that the algorithm attempts to generate a solution that respects all the

constraints).

Concluding remarks on RQ1.1: In the absence of uncertainty , an optimal mixed-integer

linear programming algorithm will almost invariably outperform our GA-based solution.

(RQ1.2) How effective is our approach in comparison to an optimal algorithm under prescribed levels
of uncertainty in temporal availability constraints? To answer this question, we performed a set of

experiments in which the algorithms were evaluated against multiple versions of the environment

in which the availability start and end of an element (i.e., consumer or resource) were generated

according to probability distributions with means fixed to coincide with the deterministic version

of the availability window (i.e., ∀𝑒 ∈ 𝐸 • 𝑓𝑡𝛼𝑒 .𝜇 =𝑊 (𝑒).𝑡𝛼 ∧ 𝑓𝑡𝜔𝑒 .𝜇 =𝑊 (𝑒).𝑡𝜔 ), and different variance
values (𝑓𝑡★𝑒 .𝜎

2 ∈ {0.1, 0.25, 0.5, 0.75, 1}). In this set of experiments, the GA planning solution was

configured to consider distributions with variance 𝜎2 = 0.5 for the sampling of the 𝜅 variants

(function 𝑠𝑝𝑙 , Section 4.3).

Figure 5 illustrates the results for the two largest problem instances of the EV charging infras-

tructure problem. Results show how the GA-based approach outperforms the MILP baseline both
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Fig. 5. Effectiveness of our approach vs MILP baseline with uncertainty in temporal availability (EV charging).

                    

15

20

25

30

35

Di
sr

up
tio

n(
#e

ve
nt

s)

13

14

15

16

17

18

19

20

21

22

Ti
m

es
pa

n(
h)

GA M
IL

P
GA M
IL

P

GA M
IL

P
GA M
IL

P

GA M
IL

P
GA M
IL

P

GA M
IL

P
GA M
IL

P

GA M
IL

P
GA M
IL

P

² = 0.1 ² = 0.25 ² = 0.5 ² = 0.75 ² = 1

#patients:80 #robots:8

                    
30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

Di
sr

up
tio

n(
#e

ve
nt

s)

12

14

16

18

20

22

24

Ti
m

es
pa

n(
h)

GA M
IL

P
GA M
IL

P

GA M
IL

P
GA M
IL

P

GA M
IL

P
GA M
IL

P

GA M
IL

P
GA M
IL

P

GA M
IL

P
GA M
IL

P
² = 0.1 ² = 0.25 ² = 0.5 ² = 0.75 ² = 1

#patients:160 #robots:16

Fig. 6. Effectiveness of our approach vs MILP baseline with uncertainty in temporal availability (RoboMax).

in cost and timespan, across all instances and variance values. It is worth noting, that even for

small variance values (e.g., 𝜎2 = 0.1), the GA shows a non-marginal improvement over the MILP

baseline (ranging between 3.12% and 5.92% for cost, and 8.64% and 11.76% for timespan). Moreover,

for variance values that coincide or are close to the one employed to configure the GA algorithm

(i.e., 𝜎2 = {0.5, 0.75}), the difference between GA and MILP is even more remarkable, going up to

6.78% for cost and 11.48% for timespan. Figure 6 shows the results for the RoboMax food logistics

problem, which confirm the general trend identified in the EV charging infrastructure problem.

Again, the GA always performs clearly better than the MILP baseline both in terms of the disruption

and timespan metrics. For small variance values (e.g., 𝜎2 = 0.1), the genetic algorithm (GA) demon-

strates a significant improvement over the mixed-integer linear programming (MILP) baseline, with

timespan reductions ranging from 4.68% to y 11.23% and disruption reductions ranging from 4.87%

to 9.31%. For variance values that match or are close to those used to configure the GA algorithm

(i.e., 𝜎2 = {0.5, 0.75}), the difference between GA and MILP becomes even more pronounced, with

timespan reductions reaching up to 13.14% and disruption reductions up to 10.52%. In this case, the

difference between the GA and MILP is not as strong in the disruption metric, which also presents

values more spread out than other metrics, most likely because the algorithms are not explicitly

optimizing for it, as discussed in RQ1.1.
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Fig. 7. Effectiveness of our approach vs MILP baseline with uncertainty in elements reliability (EV charging).
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Fig. 8. Effectiveness of our approach vs MILP baseline with uncertainty in elements reliability (RoboMax).

Concluding remarks on RQ1.2: Under prescribed levels of uncertainty in temporal avail-

ability constraints, our GA-based approach yields robust solutions that always outperform

those obtained by the MILP baseline, which exhibit a notable degradation even under low

levels of uncertainty.

(RQ1.3) How effective is our approach in comparison to an optimal algorithm under prescribed levels of
uncertainty in elements reliability?
To answer this question, we performed a set of experiments in which the algorithms were

evaluated against multiple versions of the environment where the resources are prone to fail with

probabilities that fluctuate over time. In this case, there is no uncertainty associated with temporal

availability constraints, so the availability of consumers coincides exactly with their availability

windows provided as input to the planning. Various probabilities are considered for different time

slots during the day. For instance, the cumulated probability of charger failure between 8a.m. and

12p.m. might be 0.1, whereas that same probability might change between 1p.m. and 6p.m. to 0.35

due to weather conditions, increased usage, or longer operating hours among other factors.

To carry out the experiments, different values of the failure probability are established for different

time slots. The total cumulated probability for that day is calculated using CDF (cf. Section 3). We
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start by taking low values for failure probability, starting with 0.05 and increasing by 0.20 up to 0.85.

For each value, a set of tests is conducted, each one consisting of multiple algorithm executions.

Figure 7 presents the results for the two largest problem instances of the EV charging infras-

tructure problem. The findings demonstrate that the GA-based approach outperforms the MILP

baseline in terms of both cost and timespan across all instances and variance values. It should be

noted that even for small probability of failure values (e.g., sp=0.05), the GA shows an improve-

ment over the MILP baseline (ranging between 1.55% and 2.66% for cost, and 7.74% and 12.5% for

timespan). In this case, the improvements in cost are less pronounced compared to the experiments

conducted for RQ1.2. This is due to the fact that the cost is more influenced by variations in vehicle

availability windows than by the number of chargers available. In the RoboMax case, for small

failure probability values our approach also shows an improvement over the MILP baseline (ranging

between 5.55% and 8.1% for disruption , and 6.01% and 11.53% for timespan). For higher probability

of failure values (i.e., s.p. = 0.85), the difference between GA and MILP in the EV case is even more

remarkable, especially for timespan, which goes up to 16.67%, with cost also going up to 2.77%.

Figure 8 illustrates the results for the RoboMax food logistics problem, reinforcing the general

trend observed in the EV charging infrastructure problem. Once again, our approach consistently

outperforms the baseline in both the disruption and timespan metrics. However, the difference

between the GA and MILP is less pronounced in the disruption metric, which also shows a wider

spread of values compared to other metrics. This variability is likely due to the fact that the

algorithms are not explicitly optimizing for disruption, as discussed in RQ1.1.

Concluding remarks on RQ1.3: Under prescribed levels of uncertainty on elements

reliability, our approach consistently generates robust solutions that outperform those

yielded by the baseline. Notably, even when the probability of failure is minimal, the

solutions from the MILP baseline exhibit significant degradation. However, it is worth

noting that the improvement is more limited than the one observed in RQ1.2.

(RQ1.4) How effective is our approach in comparison to an optimal algorithm under prescribed levels of
uncertainty in temporal availability constraints and elements reliability?
To answer this question, we performed a set of experiments in which the algorithms were

evaluated against multiple versions of the environment that combine the uncertainty in temporal

availability constraints as set up for RQ1.2, and the element failure probabilities as employed in

RQ1.3.

Tables 2 and 3 illustrate the results for one of the largest problem instances of the EV charging

infrastructure problem. Table 2 sumarizes the results for cost and Table 3 for timespan. Results show

how our approach outperforms the MILP baseline both in cost and timespan, across all instances,

variance and probability values. In particular, for small values of both the failure probability

(𝑠 .𝑝 = 0.05) and variance (𝜎2 = 0.1), it is observed that the cost obtained by the genetic algorithm

decreases on average by 5.96% compared to that obtained by the MILP algorithm, while the timespan

decreases on average by 16.16%. For high values of failure probability (𝑠 .𝑝 = 0.85) and variance

(𝜎2 = 1), the cost obtained by the genetic algorithm decreases on average by 22.77% compared to

that obtained by the MILP algorithm, while the timespan decreases on average by 23.89%. Overall,

it is evident that the combination of both uncertainties amplifies the differences between the results

obtained by the genetic algorithm and the MILP algorithm, with the results obtained by the genetic

algorithm being remarkably more robust. Figure 9 reinforces these results. The plot on the left-hand

side considers a charger failure probability of 25%, whereas the plot in the right-hand side considers
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Fig. 9. Effectiveness of our approach vs MILP baseline with uncertainty in both, temporal availability and
elements reliability (EV charging).
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Fig. 10. Effectiveness of our approach vs MILP baseline with uncertainty in both, temporal availability and
elements reliability (RoboMax).

a failure probability of 65%. When both types of uncertainties are combined, it can be observed that

the difference both in cost and timespan obtained by the two algorithms increases substantially.

Tables 4 and 5 illustrate the results for RoboMax case. Table 4 summarizes the results for disruption

and Table 5 for timespan. Again, results show that our approach outperforms the MILP baseline

in both metrics. For small values the failure probability (𝑠 .𝑝 = 0.05) and variance (𝜎2 = 0.1), it is

observed that the number of disruptions obtained by the genetic algorithm decreases on average by

1.88% compared to that obtained by the MILP algorithm, while the timespan decreases on average

by 13.81%. For higher values of failure probability (𝑠 .𝑝 = 0.85) and variance (𝜎2 = 1), the number

of disruptions obtained by the genetic algorithm decreases on average by 6.16% compared to that

obtained by the MILP algorithm, while the timespan decreases on average by 20.02%.

In RoboMax, it is also clear that the combination of both uncertainties add up to increase

the difference between the outcomes produced by the genetic algorithm and those generated by

the MILP algorithm, with the genetic algorithm’s results proving to be significantly more robust.

Figure 10 reinforces these results. Again, the difference between the GA andMILP is less pronounced

in the disruption metric, which also shows a wider spread of values compared to other metrics. This
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variability is likely due to the fact that the algorithms are not explicitly optimizing for disruption,

as discussed previously.

In both cases, the evaluation results further demonstrate that the interplay of these uncertainties

significantly impacts system performance, reinforcing that they do not simply co-exist but interact

within the planning process. This confirms that our approach effectively captures their combined

effect.

Algorithmic robustness, as defined by Jensen et al. [24], refers to the sustained performance

of a system despite changes in its operating environment. In our case, these changes correspond

to increasing levels of uncertainty in temporal availability constraints and element reliability.

Our evaluation systematically assesses robustness by analyzing how the algorithm adapts under

different uncertainty levels (RQ1.2 - RQ1.4). The results indicate that our approach maintains

feasible solutions and mitigates performance degradation, demonstrating robustness in uncertain

conditions.

Concluding remarks on RQ1.4:Under prescribed levels of uncertainty both in temporal

availability constraints and elements reliability, our approach produces robust solutions that

consistently outperform those obtained by the MILP baseline. Notably, even with marginal

uncertainty, solutions derived from the MILP baseline exhibit significant degradation.

Differences in performance between GA and MILP become much more pronounced when

both uncertainties are combined, compared to RQ1.2 and RQ1.3.

Table 2. Cost: GA vs MILP with uncertainty in temporal availability and elements reliability. EV charging.

𝜎2 = 0.1 𝜎2 = 0.25 𝜎2 = 0.5 𝜎2 = 0.75 𝜎2 = 1
MILP GA ΔCost MILP GA ΔCost MILP GA ΔCost MILP GA ΔCost MILP GA ΔCost

s.p = 0.05 326.85 308.46

-18.39

(-5.96%)

345.65 318.62

-27.03

(-8.48%)

366.74 330.54

-36.2

(-10.95%)

374.25 338.43

-35.82

(-10.58%)

386.52 345.37

-41.15

(-11.91%)

s.p = 0.25 368.76 327.51

-41.25

(-12.59%)

392.74 349.37

-43.37

(-12.41%)

406.87 361.41

-45.46

(-12.57%)

411.72 364.54

-47.18

(-12.94%)

432.41 376.75

-55.66

(-14.77%)

s.p = 0.45 410.48 357.38

-53.1

(-14.85%)

435.97 374.52

-61.45

(-16.40%)

443.21 377.74

-65.47

(17.33%)

438.51 381.96

-56.55

(-14.80%)

470.24 392.41

-77.83

(-19.83%)

s.p = 0.65 469.96 401.75

-68.21

(-16.97%)

478.48 407.65

-70.83

(-17.37%)

485.42 412.18

-73.24

(-17.76%)

489.38 418.43

-70.95

(-16.95%)

504.38 427.54

-76.84

(-17.97%)

s.p = 0.85 500.18 424.65

-75.53

(-17.78%)

518.53 438.46

-80.07

(-18.26%)

532.54 441.76

-90.78

(-20.54%)

542.63 448.52

-94.11

(-20.98%)

575.65 468.86

-106.79

(-22.77%)

Table 3. Timespan: GA vs MILP with uncertainty in temporal availability and elements reliability. EV charging.

𝜎2 = 0.1 𝜎2 = 0.25 𝜎2 = 0.5 𝜎2 = 0.75 𝜎2 = 1
MILP GA ΔTmsp MILP GA ΔTmsp MILP GA ΔTmsp MILP GA ΔTmsp MILP GA ΔTmsp

s,p = 0.05 18.76 16.15

-2.61

(-16.16%)
18.58 16.63

-1.95

(-11.72%)
19.53 16.76

-2.77

(-16.52%)
20.57 17.54

-3.03

(-17.27%)
19.94 17.26

-2.68

(-15.52%)

s,p = 0.25 18.97 16.08

-2.89

(-17.97%)
19.42 17.12

-2.30

(-13.43%)
20.65 17.24

-3.41

(-19.78%)
21.28 18.27

-3.01

(-16.47%)
21.43 17.68

-3.75

(-21.21%)

s,p = 0.45 20.12 16.82

-3.30

(-19.62%)
20.47 17.58

-2.89

(-16.43%)
21.35 17.78

-3.57

(-20.08%)
22.65 18.78

-3.87

(-20.61%)
22.42 18.21

-4.21

(-23.12%)

s,p = 0.65 20.76 17.18

-3.58

(-20.83%)
21.72 18.15

-3.57

(-19.67%)
22.64 18.82

-3.82

(-20.29%)
23.17 19.37

-3.80

(-19.62%)
23.78 19.04

-4.74

(-24.89%)

s,p = 0.85 22.74 18.68

-4.06

(-21.73%)
22.54 18.46

-4.08

(-22.10%)
23.26 19.15

-4.11

(-21.46%)
24.16 19.65

-4.51

(-22.95%)
25.56 20.63

-4.93

(-23.89%)

(RQ2) Impact. How much do the different sources of uncertainty impact system goals?
To answer this question, we studied the correlation between significant variables (uncertainty-

related, such as variance of uncertainty in temporal availability constraints 𝜎2
and failure probabili-

ties 𝑠 .𝑝) and the different measures of performance (e.g., cost, timespan) using Pearson’s method [17].

Pearson’s correlation coefficient is a suitable measure for assessing the strength of the relationship

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Automated Planning for Task-Based Cyber-Physical Systems under Multiple Sources of Uncertainty 111:21

Table 4. Disruption: GA vs MILP with uncertainty in temporal availability and elements reliability. RoboMax.

𝜎2 = 0.1 𝜎2 = 0.25 𝜎2 = 0.5 𝜎2 = 0.75 𝜎2 = 1
MILP GA ΔDisr. MILP GA ΔDisr. MILP GA ΔDisr. MILP GA ΔDisr. MILP GA ΔDisr.

s.p = 0.05 16.82 16.51

-0.31

(-1.88%)
17.51 16.86

-0.65

(-3.86%)
17.86 17.16

-0.7

(-4.08%)
18.24 17.34

-0.9

(-5.19%)
18.76 17.52

-1.24

(-7.08%)

s.p = 0.25 17.35 16.95

-0.4

(-2.36%)
18.15 17.32

-0.83

(-4.79%)
18.43 17.72

-0.71

(-4%)
18.72 17.95

-0.77

(-4.11%)
19.14 18.03

-1.11

(-6.16%)

s.p = 0.45 17.68 17.23

-0.45

(-2.61%)
18.57 17.61

-0.96

(-5.45%)
18.87 17.93

-0.94

(5.24%)
19.12 18.13

-0.99

(-5.46%)
19.36 18.28

-1.08

(-5.9%)

s.p = 0.65 18.37 17.64

-0.73

(-4.14%)
18.92 18.14

-0.78

(-4.3%)
19.45 18.46

-0.99

(-5.36%)
19.62 18.58

-1.04

(-5.59%)
19.81 18.75

-1.06

(-5.65%)

s.p = 0.85 18.94 18.26

-0.68

(-3.72%)
19.52 18.57

-0.95

(-5.12%)
19.79 18.71

-1.08

(-5.77%)
19.98 18.82

-1.16

(-6.16%)
20.13 19.04

-1.09

(-5.72%)

Table 5. Timespan: GA vs MILP with uncertainty in temporal availability and elements reliability. RoboMax.

𝜎2 = 0.1 𝜎2 = 0.25 𝜎2 = 0.5 𝜎2 = 0.75 𝜎2 = 1
MILP GA ΔTmsp MILP GA ΔTmsp MILP GA ΔTmsp MILP GA ΔTmsp MILP GA ΔTmsp

s,p = 0.05 20.85 18.32

-2.53

(-13.81%)
20.69 18.75

-1.94

(-10.35%)
21.13 18.81

-2.32

(-12.33%)
21.25 19.64

-1.61

(-8.18%)
21.46 19.78

-1.68

(-8.49%)

s,p = 0.25 21.26 18.67

-2.59

(-13.87%)
21.53 19.24

-2.29

(-11.9%)
21.72 19.36

-2.36

(-12.19%)
22.37 19.85

-2.52

(-12.69%)
22.52 20.07

-2.45

(-12.21%)

s,p = 0.45 22.31 19.35

-2.96

(-15.3%)
22.57 19.65

-2.92

(-16.54%)
22.78 19.86

-2.92

(-14.7%)
23.25 20.04

-3.21

(-16.01%)
23.51 20.34

-3.17

(-15.59%)

s,p = 0.65 23.81 20.58

-3.23

(-15.69%)
23.82 20.63

-3.19

(-15.46%)
23.92 20.64

-3.28

(-15.89%)
24.26 20.47

-3.79

(-18.51%)
24.82 21.15

-3.67

(-17.35%)

s,p = 0.85 24.78 21.37

-3.41

(-15.96%)
24.61 20.84

-3.77

(-18.09%)
24.64 21.15

-3.49

(-16.5%)
25.28 21.22

-4.06

(-19.13%)
26.14 21.78

-4.36

(-20.02%)

Table 6. Improvement of our approach under different uncertainty variants: EV charging.

Improvement over MILP (%)
Uncertainty Temporal Resource Combined
source(s) availability (UT) reliability (UR) (UTR) Δ Cost Δ Timespan

Cost Timespan Cost Timespan Cost Timespan UT-UTR UR-UTR UT-UTR UR-UTR
𝜎2 = 0.1
s.p = 0.05 3.12 8.64 2.66 7.74 6.45 14.58 3.33 3.79 5.94 6.84

𝜎2 = 0.25
s.p = 0.65 3.86 9.15 4.34 9.64 7.76 16.72 3.9 3.42 7.57 7.08

𝜎2 = 0.75
s.p = 0.25 4.97 10.08 3.85 9.21 8.73 18.42 3.76 4.88 8.34 9.21

𝜎2 = 1
s.p = 0.85 6.78 11.48 5.74 13.1 12.47 19.75 5.69 6.73 8.27 6.65

Table 7. Improvement of our approach under different uncertainty variants: RoboMax.

Improvement over MILP (%)
Uncertainty Temporal Resource Combined
sources availability (UT) reliability (UR) UTR Δ Disruption Δ Timespan

Disruption Timespan Disruption Timespan Disruption Timespan UT-UTR UR-UTR UT-UTR UR-UTR
𝜎2 = 0.1
s.p = 0.05 4.87 4.68 5.55 6.01 8.45 12.31 3.58 2.9 7.63 6.3

𝜎2 = 0.25
s.p = 0.65 7.18 8.56 7.64 9.64 10.32 15.22 3.14 2.68 6.67 5.58

𝜎2 = 0.75
s.p = 0.25 9.31 11.23 8.12 11.56 13.68 17.67 4.37 5.56 6.44 6.11

𝜎2 = 1
s.p = 0.85 10.52 12.14 9.73 12.55 15.24 19.78 4.72 5.51 7.64 7.23

between two quantitative, linearly correlated variables. To determine the statistical significance of

the correlation coefficients we obtained, we performed two-tailed t-tests on each pair of variables.

The following pairs of variables were included in this part of the analysis:

• EV Charging infrastructure: (i) 𝜎2
-Cost, (ii) 𝜎2

-Timespan, (iii)𝑠 .𝑝-Cost, (iv) 𝑠 .𝑝-Timespan.

• RoboMax: (i) 𝜎2
-Disruption, (ii) 𝜎2

-Timespan, (iii)𝑠 .𝑝-Disruption, (iv) 𝑠 .𝑝-Timespan.

As a preliminary step, we created a scatter plot for each pair of variables to visualize the

relationship between them. In all cases the function that best approximates the relationship is linear,

as it can be observed in Figures 11 and 12 (EV charging infrastructure), as well as Figures 13 and 14

(RoboMax). This step confirmed that Pearson’s method is adequate to analyze the correlation of
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Table 8. Correlation matrix (EV charging).

Cost Timespan 𝜎2 𝑠.𝑝

Cost 1 0.976 0.988 0.992

Timespan 0.976 1 0.981 0.990

𝜎2
0.988 0.981 1 –

𝑠.𝑝 0.992 0.990 – 1

Table 9. Correlation matrix (RoboMax).

#Disruptions Timespan 𝜎2 𝑠.𝑝

#Disruptions 1 0.874 0.911 0.887

Timespan 0.874 1 0.994 0.990

𝜎2
0.9117 0.994 1 –

𝑠.𝑝 0.8878 0.990 – 1
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Fig. 11. Correlation between Cost-Variance and Timespan-Variance (EV Charging).

these variables. Pearson coefficients for the EV charging infrastructure and RoboMax case studies

are included in Tables 8 and 9, respectively. Note that for our analysis, all p-values obtained in both

case studies are below 0.01, indicating the statistical significance of the correlation coefficients.

Table 8 (EV charging infrastructure), shows high correlation coefficients across the board, which

indicate strong positive relationships between the variables. The cost is strongly correlated with

both variance 𝜎2
(0.988) and failure probability 𝑠 .𝑝 (0.992), suggesting that both increased variance

in EV availability and higher charger failure probabilities entail higher costs, as expected. Similarly,

the timespan shows strong correlations with variance (0.981) and failure probability (0.99).

In RoboMax (Table 9) the timespan is strongly correlated with both variance (0.994) and failure

probability (0.99). In this case, the number of disruptions also shows a fairly strong correlation

with variance (0.911) and failure probability (0.887). However, the correlation coefficients are lower

compared to the others. This is consistent with the fact that the algorithm does not explicitly aim

at minimizing the number of robot interruptions.

The results obtained for both case studies highlight significant interdependencies among cost

/disruption, timespan, variance in temporal availability constraints, and failure probability. However,

they do not provide an indication of the magnitude of the impact of uncertainty sources upon system

goals. To further inform our answer to this question, we studied the improvement of our approach

over MILP under different uncertainty scenarios that include: uncertainty in temporal availability

(UT), uncertainty in resource reliability (UR), and both sources of uncertainty combined (UTR). The

results in Tables 6 and 7 show that in general, the impact of individual sources of uncertainty applied

independently are similar between them, whereas their combined effect tends to approximately

double the increase in system metrics almost invariably. If we piece this information together

with that of the correlation study, the generalized positive correlation of the effects of sources of

uncertainty combined with the additive increases in the metrics observed indicates that there is an

augmentation behavior in which the effects of the sources of uncertainty are strongly correlated,

but none of them dominates the other. This contrasts with other possibilities that might include

uncertainty dominance (strong correlation, but reducing one source of uncertainty reduces the

other), or conflict in which sources of uncertainty cancel out each other’s effects [6].
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Fig. 12. Correlation between Cost-Probability and Timespan-Probability (EV Charging).
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Fig. 13. Correlation between Disruption-Variance and Timespan-Variance (RoboMax).
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Fig. 14. Correlation between Cost-Variance and Cost-Timespan (RoboMax).

Concluding remarks on RQ2: There are significant dependencies indicated by positive

correlations between the effects of the sources of uncertainty (variance and failure proba-

bility) and system goal metrics (cost/disruption, timespan). This, along with the additive

increases on metrics observed in scenarios that combine both sources of uncertainty (UTR),

indicates a compound impact on the metrics that suggests an augmentation behavior in
which the effects of the sources of uncertainty are strongly correlated, but none of them

dominates the other.
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Table 10. Planning Execution Times: GA vs MILP.

EV Charging Infrastructure

|𝑅 | |𝐶 | GA Time ms MILP Time ms ΔTime %
2 5 31.82 ± 125.65 27.87 ± 132.98 -12.41

2 20 269.25 ± 156.87 281.36 ± 247.5 +4.49

4 40 537.84 ± 322.8 1897.56 ± 361.82 +252.81

8 80 1584.92 ± 475.14 6728.17 ± 463.81 +324.51

16 160 3601.23 ± 345.26 15149.28 ± 498.88 +320.67

Robomax: Food Logistics

|𝑅 | |𝐶 | GA Time ms MILP Time ms ΔTime %
2 5 42.54 ± 140.21 45.21 ± 145.68 +6.28

2 20 328.23 ± 436.83 462.81 ± 420.38 +41.00

4 40 651.15 ± 452.64 1901.92 ± 498.29 +192.09

8 80 1757.84 ± 390.58 6260.25 ± 484.72 +256.13

16 160 3681.21 ± 520.04 14928.53 ± 421.32 +305.53

(RQ3) Efficiency. How efficient is our approach with respect to an optimal algorithm?
To answer this question, we measured the execution times both for the MILP-based and the

GA-based approaches from the set of experiments carried out for RQ1.1-RQ1.4. Table 10 summarizes

the results obtained for the different problem instance sizes, which show how the efficiency of the

GA-based solution is clearly better than that of the MILP baseline. As expected, the difference in

computation time for small problem instances is marginal, but as the problem instance size increases,

we observe remarkable efficiency differences that go up to a 327.67% increment of computation

time of MILP with respect to the GA, for problem instances of 16 resources and 160 consumers.

Concluding remarks on RQ3: The GA-based approach is clearly more efficient than

MILP, yielding execution times that are comparable for small problem instances, but differ

remarkably as the problem instance size increases.

5.3 Threats to Validity
There are four types of threats that can affect the validity of our study according to Wohlin et

al. [53]. They are summarized in the following.

5.3.1 Construct validity threats. These threats are concerned with the relationship between theory

and what is observed. We designed our approach with two interacting sources of uncertainty,

namely uncertainty in temporal availability constraints and element reliability. However, we

are aware that there are other sources of uncertainty that might affect the effectiveness of our

approach [31, 38, 39] (e.g., uncertainties due to model abstraction, imperfect sensing and actuation).

Hence, we will perform further experiments in future work, in which we will explore the interaction

of different sources of uncertainty [11].

5.3.2 Internal validity threats. They are related to those factors that might affect the results of

our evaluation. We compared our genetic algorithm with a MILP baseline. The choice of Mixed-

Integer Linear Programming (MILP) as the baseline is motivated by its ability to provide optimal

solutions in the absence of uncertainty. MILP serves as a fundamental reference point since any

other heuristic or approximate algorithm, in the best case, would converge to the same solution as

MILP. Additionally, MILP is widely used in optimization problems similar to ours (e.g.[33]), making

it a reliable benchmark for performance evaluation.

We acknowledge that there are other alternatives for addressing this problem, such as well-known

Multi-Objective Genetic Algorithms (MOGAs) like NSGA-II [48], constraint programming, dynamic

programming, and heuristic approaches like Simulated Annealing and Tabu Search. These methods

do not guarantee optimality and often rely on problem-specific heuristics. Similarly, reinforcement

learning-based approaches introduce additional complexity and may require extensive training

data, making them less suited for direct comparison in our setting.
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Other methods are probabilistic and statistical model checking [25, 28], that can be adapted

to our problem and potentially outperform MILP. We plan to explore the tradeoffs in terms of

efficiency and effectiveness of such alternatives in the future.

5.3.3 External validity threats. These threats have to do with the extent to which it is possible to

generalize the findings of the experiments. Our experiments have been performed on two case

studies, which are simulations of two different CPS. Without conducting more experiments in

the real CPS and other types of CPS, we cannot generalize the effectiveness and efficiency of our

approach. However, we want to point out that: (i) our problem formalization has been general

enough to be easily applicable to two CPS that differ in terms of constituent components, tasks,

roles of humans-in-the-loop, and mission objectives, and (ii) in our context, conducting experiments

with a real CPS requires that we connect the implementation of our approach to it during operation

for long periods of time. Despite the fact that setting up this type of experiment is complex and

expensive, we plan to expand our evaluation with experiments in real testbeds, including the EV

charging infrastructure in our research facility (cf. Figure 1).

5.3.4 Conclusion validity threats. These threats are concerned with the issues that affect the ability

to draw correct conclusions from the data obtained from the experiments. We evaluate our method

with metrics that are specific to the planning problem at hand (such as qualities specific to each

CPS system like cost or timespan), and not in the broader context of the adaptation loop. However,

other metrics could be adopted to evaluate the overall qualities of the adaptive system, e.g. [7, 49].

We will include these additional metrics in future work while conducting experiments in the real

testbeds, where there is a clear opportunity to collect data that enables a broader evaluation of the

adaptation loop.

6 RELATEDWORK
Uncertainty management in Cyber-Physical Systems (CPS) has been widely studied in different

contexts. Zhang et al. [54] propose a conceptual model to classify and understand uncertainty

in CPS, emphasizing the need for systematic identification of uncertainty sources. Other works

focus on uncertainty-aware task scheduling and planning in self-adaptive CPS, such as [13], which

explores techniques to handle environmental and operational uncertainty during task execution.

While these studies provide valuable insights, they do not specifically address the combined effect

of uncertainty in temporal availability constraints and resource failures in task-based CPS. Our

work extends this research by developing a planning approach that mitigates multiple sources of

uncertainty, ensuring adaptability in dynamic environments.

Other than the works related to the general field of CPS, the number of approaches for planning

under uncertainty has recently experienced substantial growth in multiple other areas. Although

we cannot give an exhaustive account of existing approaches, we summarize in this section some

that are relevant to our proposal and belong to various (potentially overlapping) areas of research.

Scheduling. There are multiple proposals that deal with the assignment of resources under

availability constraints, although uncertainty in resource availability has been largely unexplored

until recently [1]. One of the notable exceptions is the algorithm developed by Wang et al. [50],

which addresses the Multi-Skilled Resource-Constrained Project Scheduling Problem (MSRCPSP) with

uncertainty in resource availability to minimize the makespan of a set of tasks, although it is not

equipped to deal with other optimization objectives and their trade-offs.

Self-adaptive systems. Cheng et al.’s [14] early work proposes resource availability prediction

as a means to achieve proactive adaptation, a direction that was later followed by other authors

(e.g., [16, 36]), but without support for explicit resource availability constraints. DECIDE [5] is

an approach to build distributed self-adaptive software used in mission-critical applications that
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uses quantitative verification at runtime to agree individual component contributions to meeting

system-level quality-of-service requirements, and then to ensure that components achieve their

agreed contributions to the mission in the presence of changes and failures. Despite not explicitly

considering temporal availability constraints, this approach is able to provide robust contributions

to the mission in the presence of failures. Cámara et al. [10] propose a planning approach for

adaptive CPS able to consider the impact of mutual dependencies between software architecture

and task planning on mission goals. The approach is able to generate adaptation decisions both on

the reconfiguration of the system’s software architecture (which can be carried out in any physical

location), and (physical) task plans. Solutions provide both structural and quantitative formal

guarantees under prescribed levels of uncertainty in the reliability of task executions. Solutions are

generated using a combination of Alloy [23] and the PRISM probabilistic model checker [26], and

provide both structural and quantitative formal guarantees under prescribed levels of uncertainty

in the reliability of task executions. Carwehl et al. [12] propose an architecture comprising an

uncertainty reduction controller that drives the adaptive acquisition of new information within

the self-adaptation loop, and a method that uses probabilistic model checking to synthesize such

controllers that aim at delivering optimal trade-offs between uncertainty reduction benefits and

new information acquisition costs. Filippone et al. [20] propose an approach for the realization of

adaptable multi-robot systems, which are capable of dealing with uncertainties by adapting their

mission at runtime. The approach hinges on the concept of adaptable task that is used in the global

mission specification of the MRS to identify the mission tasks affected by uncertainties. Adaptation

alternatives are modeled as sub-missions and associated with the adaptable task. At runtime, ad

hoc written trigger functions executed by robots sense and evaluate the environment and select the

most suitable adaptation alternative for execution.

Multi-agent and multi-robot systems. The Genetic Mission Planner (GMP) [33] casts a mission

for heterogeneous multi-agent systems as an extension of the traveling salesperson problem

described through a mixed-integer linear programming formulation and solve it using genetic

algorithms. Their results show that, in the presence of precedence timing constraints, their genetic

planner outperforms another solution implemented via mixed-integer linear programming. In a

more recent piece of work [34], the authors explore optimization of tasks via parallelization, making

an explicit distinction between so-called virtual and physical tasks, which are analogous to the

reconfiguration/physical tasks described in [10]. Liu et al. [29] propose a multi-objective strength

learning particle swarm optimization (SLPSO) algorithm to optimize multiple objectives. In this

article, the cooperative multi-robot task planning problem is converted into a two-step problem

of task permutation construction and robot subset selection. KANOA [47] combines constraint

solving with quantitative verification for multi-robot task allocation and scheduling that is able to

deal with task precedence constraints and multiple optimization objectives. MAPmAKER [32] is an

approach to decentralized planning for multi robot systems that uses a variant of three-valued LTL

semantics to reason under partial knowledge about mission satisfaction. Claes at al. [15] tackle the

spatial task allocation problem in warehouse commissioning of robots teams, where robots need to

service a set of tasks distributed in the warehouse.

Uncertainty Interaction. The Uncertainty Interaction Problem (UIP) [6, 11] poses various chal-

lenges related to the representation, analysis, mitigation, and exploration of interacting sources

of uncertainty in software-intensive systems such as sCPS. Many of these challenges are largely

unaddressed, although the self-adaptive systems community has recently acknowledged them

as crucial to attain more resilient adaptive systems [52], and preliminary efforts that explicitly

acknowledge interacting sources of uncertainty have started to emerge [8, 21]. However, none of

these efforts explicitly addresses planning under multiple sources of uncertainty.
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To the best of our knowledge and despite their ability to mitigate different forms of uncertainty,

none of the approaches mentioned in the multi-agent/robot, self-adaptive systems, and uncertainty

interaction areas are built to consider uncertainty in temporal availability constraints. Moreover, if

we focus on the approaches which (like ours) are centered on planning, we notice that they are not

equipped to explicitly mitigate the impact of multiple sources of uncertainty (with uncertainty in

temporal availability constraints being one of them) upon system goals.

7 CONCLUSIONS
In this article, we have contributed towards addressing the Uncertainty Interaction Problem (UIP) [11]

in planning for self-adaptation. In particular, we have considered the interaction of both temporal

availability constraints and element reliability in task-based cyber-physical systems. To be able to

study how the system behaves under both types of uncertainty, we have developed an implementa-

tion that uses genetic algorithms and compare it with a baseline implementation that guarantees a

globally optimal solution in the absence of uncertainty.

Our results show that the baseline implementation fares better than our approach under no

uncertainty. However, when uncertainty is taken into account, which is the case in the real systems,

our proposed approach yields solutions that outperform the baseline implementation. The difference

between the baseline and our proposal grows as the degree of uncertainty increases. Besides, when

both types of uncertainty are present, the difference with the baseline implementation is even

greater, and the effects of the various sources of uncertainty are strongly correlated, exhibiting

augmentation behavior [6].

In future work, we plan to continue studying the UIP by considering additional sources of

uncertainty and evaluating how they affect the overall system’s behavior. Moreover, we will explore

the use of uncertainty reduction [9, 12, 35] to selectively mitigate the impact of various sources of

uncertainty upon system goals.

VERIFIABILITY
For the sake of verifiability, our prototype as well as all artifacts used for our experiments are

available on our project’s website [44]. Detailed instructions on how to run our prototype and

explore our replication package are also available.
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