Softw Syst Model
DOI 10.1007/s10270-016-0548-7

@ CrossMark

SPECIAL SECTION PAPER

Full contract verification for ATL using symbolic execution

Bentley James Oakes! - Javier Troya? - Levi Liicio® - Manuel Wimmer

4

The final publication is available at link.springer.com:
https://link.springer.com/article/10.1007/s10270-016-0548-7

Received: 3 February 2016 / Revised: 28 June 2016 / Accepted: 9 July 2016

© Springer-Verlag Berlin Heidelberg 2016

Abstract The Atlas Transformation Language (ATL) is cur-
rently one of the most used model transformation languages
and has become a de facto standard in model-driven engineer-
ing for implementing model transformations. At the same
time, it is understood by the community that enhancing meth-
ods for exhaustively verifying such transformations allows
for a more widespread adoption of model-driven engineer-
ing in industry. A variety of proposals for the verification
of ATL transformations have arisen in the past few years.
However, the majority of these techniques are either based
on non-exhaustive testing or on proof methods that require
human assistance and/or are not complete. In this paper,
we describe our method for statically verifying the declar-
ative subset of ATL model transformations. This verification
is performed by translating the transformation (including
features like filters, OCL expressions, and lazy rules) into
our model transformation language DSLTrans. As we han-
dle only the declarative portion of ATL, and DSLTrans is

Communicated by Jordi Cabot and Alexander Egyed.

B Bentley James Oakes
bentley.oakes @mail.mcgill.ca

Javier Troya
jtroya@us.es

Levi Licio

lucio @fortiss.org

Manuel Wimmer

wimmer@big.tuwien.ac.at

School of Computer Science, McGill University, Montreal,

Canada

Department of Computing Languages and Systems,
University of Seville, Seville, Spain

fortiss GmbH, Munich, Germany

Business Informatics Group, TU Wien, Vienna, Austria

Published online: 27 July 2016

Turing-incomplete, this reduction in expressivity allows us
to use a symbolic-execution approach to generate represen-
tations of all possible input models to the transformation. We
then verify pre-/post-condition contracts on these represen-
tations, which in turn verifies the transformation itself. The
technique we present in this paper is exhaustive for the subset
of declarative ATL model transformations. This means that
if the prover indicates a contract holds on a transformation,
then the contract’s pre-/post-condition pair will be true for
any input model for that transformation. We demonstrate and
explore the applicability of our technique by studying several
relatively large and complex ATL model transformations,
including a model transformation developed in collaboration
with our industrial partner. As well, we present our ‘slic-
ing’ technique. This technique selects only those rules in the
DSLTrans transformation needed for contract proof, thereby
reducing proving time.

Keywords Model transformation - ATL - Formal verifica-
tion - Symbolic execution - Contracts - Pre-/post-conditions

1 Introduction

Model transformations have become the main means for
manipulating models in model-driven engineering [11], as
transformations are an excellent compromise between strong
theoretical foundations and applicability to real-world prob-
lems [33]. In particular, model transformations allow for
mathematical treatment based on foundations of graphs and
graph transformations and can natively manipulate domain-
specific concepts expressed in metamodels.

For example, the Atlas Transformation Language (ATL)
[4,27] has come to prominence in the model-driven engi-
neering community. This success is due to ATL’s flexibility,

@ Springer

B.J. Oakes et al.

support of the main meta-modeling standards, usability that
relies on strong tool integration with the Eclipse world, and
a supportive development community.

Due to the importance of ATL in both the academic and
the industrial arenas, the verification of ATL transformations
is of prime importance. This is because the correctness of
software built using model-driven engineering techniques
typically relies on the correctness of operations executed
using model transformations. As well, there is a strong
demand for tools that allow the building of verified software,
especially in industries where quality and safety standards
have to be met.

In this paper we address this issue by detailing our tech-
nique for verifying visual pre-/post-condition contracts on
ATL transformations. A contract is said to hold on a trans-
formation if it holds on the transformation’s input/output
pairs. That is, for all input models where the contract’s
pre-condition holds, the contract’s post-condition also holds
in the corresponding output model produced by executing
the transformation. Traceability constraints between the ele-
ments of the input and output models may also be required.
Otherwise, the contract does not hold, and consequently, the
transformation does not correctly implement the contract.

For example, this paper considers as running example
an extended version of the well-known Families-to-Persons
transformation from the ATL zoo [2], where mother(s),
father(s), daughter(s), and son(s) belonging to a family are
translated into men and women who are members of a com-
munity. One possible contract would try to assert that, for
any input model containing a family that includes a mother
and a daughter, a man is produced in the output community.
We would expect the contract not to hold for the Families-
to-Persons transformation, because there can exist families
that are composed of only a mother and her daughter.

The main contribution of our technique is that, if our
prover demonstrates that the contract holds, then it will hold
for any input model given to the ATL model transforma-
tion. We can thus guarantee the user can safely execute the
model transformation without any need for additional test-
ing or runtime checking, as seen in other ATL verification
approaches (cf. Sect. 9). Our contract language is based on
pre-/post-condition contracts, but also includes propositional
logic operators for combining contracts. Section 5 includes a
discussion of contracts, including examples and a summary
of contract expressiveness.

We prove that contracts hold or not by translating ATL
transformations into transformations defined in a model
transformation language called DSLTrans [9]. A theoreti-
cal framework has been developed for the DSLTrans model
transformation language in which pre-/post-condition con-
tracts can be shown to hold for all those input/output model
pairs resulting from executing a given DSLTrans model trans-
formation or to not hold for at least one of those input/output

@ Springer

pairs [31]. A fully automatic property prover based on this
theory has been shown to be applicable to industrial prob-
lems [43].

In this paper we focus on verifying the declarative part of
ATL, given the similarity to the DSLTrans model transfor-
mation language. It is common practice to use this subset of
the language for the majority of transformation requirements.
Additionally, using only declarative ATL normally results in
clearer, more readable and more maintainable model trans-
formations than when the imperative part of the language is
used.

Please note that this article is an extension of a paper pre-
sented at the MoDELS 2015 conference [35]. Besides incre-
mental advancements of the general verification approach,
this article introduces four major extensions over the previ-
ous paper. First, a substantial subsection (cf. Sect. 4.2.2) has
been added, which explains how Object Constraint Language
(OCL) expressions are handled in the transformation from
ATL to DSLTrans. Second, additional ATL features are now
considered in the mapping, namely helpers and conditions
(cf. Sect. 4.1). Third, the evaluation of the approach has been
significantly improved. In particular, we now also compare
the transformations produced by the HOT with hand-built
transformations in two case studies of varying complexity.
Finally, the slicing algorithm initially described in [35] has
been further improved and is now presented in more detail
in Sect. 7.

The presentation of our work is as follows: Sect. 2 briefly
introduces the ATL and DSLTrans languages and their rele-
vant constructs. Following this, Sect. 3 presents the extended
Families-to-Persons ATL transformation, describes how it is
executed, and presents its DSLTrans counterpart.

Section 4 provides a pseudocode algorithm and execution
example for the higher-order transformation that automati-
cally transforms declarative ATL transformations into their
semantically equivalent DSLTrans counterparts.

Section 5 discusses our contract-proving method. This
includes the creation of the artifacts which represent transfor-
mation executions through symbolic execution, as well as a
description of how contracts are proven using these artifacts.
Some relevant pre-/post-condition contracts for the extended
Families-to-Persons transformation are also described.

Performance results obtained from applying our tool to
a number of transformations, including a transformation
obtained from our industrial partner, are presented in Sect. 6.
These results are discussed within the section and show
that our technique is feasible. In Sect. 7, our slicing algo-
rithm is discussed, which allows the prover to select only
those rules which are needed to prove a particular contract.
Results presented in this section demonstrate the reduction
in contract-proving time.

Section 8 examines the transformations produced by our
higher-order transformation (HOT) from ATL code, versus

Full contract verification for ATL using symbolic execution

versions produced by hand in our earlier work. Both versions
of one transformation are then used for contract proving, to
examine the suitability of the HOT to replace the building
of DSLTrans transformations by hand. Finally, we wrap-up
in Sects. 9 and 10 by describing related work and discussing
threats to validity, our conclusions, and some thoughts on
future work.

2 Preliminaries: ATL and DSLTrans

In this section, we introduce the model transformation lan-
guages used in this paper.

2.1 ATL

ATL is a textual rule-based model transformation language
that provides both declarative and imperative language con-
cepts. It is thus considered a hybrid model transformation
language.

An ATL transformation is composed of a set of transfor-
mation rules and helpers. Each rule describes how certain
target model elements should be generated from certain
source model elements. There are two kinds of rules: matched
rules and lazy rules.! Matched rules are automatically exe-
cuted by the ATL execution engine for every match in the
source model according to the input patterns of the matched
rules. In contrast, lazy rules have to be explicitly called from
another rule, which gives more control over the transforma-
tion execution.

The Object Constraint Language (OCL) is used all
throughout ATL transformations as an expression language.
A helper can be seen as an auxiliary OCL function, which can
be used to avoid the duplication of the OCL code at different
points in the ATL transformation.

Rules are mainly composed of an input pattern and an
output pattern. The input pattern is used to match input pat-
tern elements that are relevant for the rule. The output pattern
specifies how the output pattern elements are created from
the input model elements matched by the input pattern. Each
output pattern element can have several bindings that can
be used to initialize the values of the elements in the target
model.

Please note that these initializations are performed in a
second phase after a first phase where all output elements are
created by the matched rules. This separation in two steps
enables the initialization of target values independent from
the execution order of the rules, as explained in detail in
Sect. 3.3.

! We include ATL’s called rules under lazy rules.

Listing 1 Families-to-Persons ATL Transformation Excerpt

module Families2Persons;

create OUT:Persons from IN:Families:

rule Country2Community {

from
c:Families!Country

to
cmm: Persons!Community (
persons<—c.families—>collect(fif mothers),
N

rule Mother2Woman {

from
p:Families'Parent
(p.familymothers.includes)

to

w: Persons!Woman (

fullName<—p.firstName+p.family.lastName

)}

In Listing 1 we give a minimal excerpt of the Families-to-
Persons transformation, which is fully explained in Sect. 3.
In particular, two matched rules are defined. The first one
transforms Countries into Communities, while the second
one creates for each mother instance in the source model,
a Woman instance in the target model. Please note that the
second rule also has a filter for selecting from the set of
Parents only the mothers. Bindings are used, for instance, to
initialize the persons reference of Communities, by collecting
all mothers from all Families of the matched Country.

For more information on ATL the interested reader is
referred to [27].

2.2 DSLTrans

DSLTrans is a visual graph-based and rule-based model
transformation engine that has two important properties
enforced by construction: all its computations are both termi-
nating and confluent [9]. These properties stem from the fact
that DSLTrans does not allow unbounded loops during execu-
tion, making it a Turing-incomplete computing language [9].
Besides their obvious importance in practice, termination and
confluence were instrumental in the implementation of our
verification technique for pre-/post-condition contracts.

Model transformations are expressed in DSLTrans as sets
of graph rewriting rules, having an upper part (named Match-
Model), a lower part (ApplyModel) and, optionally, negative
application conditions. The main construction used in the
scheduling of model transformation rules in DSLTrans is
a layer. Each model transformation rule in a layer cannot
match over the output of any other rule in the same layer. As
well, rules cannot modify the input graph during the rewrit-
ing phase (termed out-place execution). Layers are organized
sequentially, and the output model that results from execut-
ing a given layer is passed as input to the next layer in the
sequence.

A DSLTrans rule can match over the elements of the input
model of the transformation and also over elements that have
been generated so far in the output model. Matching over
elements of the output model of a transformation is achieved
using a DSLTrans construct called backward links. Backward

@ Springer

B.J. Oakes et al.

UnionWomanRule

] HouseholdRoot Y Family] Member

have mother

CommunityRoot ‘Woman

has
Fig. 1 An example of a DSLTrans rule

links allow matching over traces between elements in the
input and the output models of the transformation. These
traces are explicitly built by the DSLTrans transformation
engine during rule execution.

For example, we depict in Fig. 1 a rule in the DSLTrans
language. When a rule is executed, the graph in the Match-
Model of the rule is searched for in the transformation’s input
model, together with the classes in the ApplyModel of the rule
that are connected to backward links. An example of a back-
ward link can be observed in Fig. 1 as a dotted line connecting
the Country and the Community match classes. During the
rewrite part of rule application, the instances of classes in the
ApplyModel of the rule that are not connected to backward
links, together with their adjacent relations, are created in the
output model.

For example, the UnionWomanRule rule in Fig. 1 will
match over a Country element connected to a Family element
connected to a Parent element. If these elements are found
in the input model along with the corresponding Community
and Woman elements in the output model, then a persons
relation will be created between those output elements.

Although not present in this rule, copying object attribute
values from the MatchModel to the ApplyModel of the rules is
also part of the DSLTrans language, as illustrated in Sect. 3.4.

In addition to the constructs presented in the example in
Fig. 1, DSLTrans has several others: existential matching
which allows selecting only one result when a match class
of a rule matches an input model, indirect links for transitive
matching over containment relations in the input model, and
negative application conditions that allow the transformation
designer to specify conditions under which a rule should not
match. These constructs are not currently used in our verifi-
cation approach, and the interested reader is referred to [9]
for further information.

3 The extended Families-to-Persons
transformation

As our running example we present an extended ver-
sion of the Families-to-Persons transformation described in

@ Springer

[35]. The original Families-to-Persons transformation can be
found in the ATL zoo [2] and has also been discussed in a
number of related works on verification and testing [24].

We chose this Families-to-Persons transformation as our
running example for two reasons. First, it transforms domains
whose concepts are easily understandable by anyone (cf.
Sect. 3.1). Second, it has a certain degree of complexity
since it uses many features available in the ATL language
(cf. Sect. 3.2).

3.1 Transformation domains

The input and output metamodels of this transformation are
shown in Fig. 2. Please note that abstract classes are depicted
in gray color and with italic names, and inheritance relation-
ships are depicted in gray.

The input metamodel, the Families_Extended metamodel,
has the Country class as aroot element. A Country is made up
of companies, families, and cities. A Family has a lastName,
is registeredIn a Neighborhood, and can have any number of
mothers and fathers, who are Parents and may, in turn, work
in (worksIn) a Company. It can also contain any number
of sons and daughters, who are Children, and every child
goesTo a School. Both parents and children are Members
that have a firstName, belong to a family and each of them
livesIn a City.

NamedElement
1ame : EString

0.1 rer—) 0.*
Compan -
worksIn companies
0..*|companies

.
fés | iin

0.* 0.*
ordinary special

1..*|neighborhoods

0.*
daughters 1.1, registeredin

B
0.+ |_Parent Child Neighborhood 0. School
| schools

0.* 0%
mothers | fathers sons

1\ students 1.1 /]\goesTo
0.*
Member
firstName : EString
()
- 0..* associations —
I L]

*{, persons

members Person
>{ FullName - EString

committee [7 1

I

workers

0.%

townHalls \,1..*

NamedElement
name : EString

..*| facilities .
Facility

OrdinaryFacility

SpecialFacility

(b)

Fig. 2 Metamodels of the Families-to-Persons_Extended transforma-
tion

Full contract verification for ATL using symbolic execution

A City may contain companies, and a Company, in turn,
can be present in (relationship is/n) several distinct cities.
A City is composed of neighborhoods, and these can have
schools, where several students are registered. Every School
has Services, and these may be special, for students with
special needs, or simply offer ordinary services. Finally,
countries, cities, companies, neighborhoods and schools
have a name attribute, which is inherited from the abstract
NamedElement class.

The output metamodel, Persons_Extended, is shown in
Fig. 2b. The root class is Community, which is made up of
persons, townHalls, and associations. A Person has a full-
Name and can be either a Man or a Woman. An Association
has a Committee that makes decisions. Every TownHall has
aroster of workers (all the persons that are employed), hosts
a Commiittee to make decisions, and also governs several dis-
tricts. A District may contain several facilities, either of type
SpecialFacility for those with special needs or OrdinaryFa-
cility. Each Facility may have registered several persons as
members. Finally, associations, town halls, committees, dis-
tricts, and facilities have a name attribute.

3.2 Transformation explanation

Listing 2 displays the ATL code for the Families-to-
Persons_Extended model transformation, which is com-
posed of 10 rules. In order to better explain the transformation
and the mapping to the DSLTrans language (cf. Sect. 4.2.1),
we have annotated many lines in the listing as follows:

Ri stands for rule i

— IPEjj for in-pattern element j in rule i

Fi for filter of rule i

OPEij for out-pattern element j of rule i

— Bijk for binding k in simple out-pattern element j of rule
i

In ATL, the from part of rules is called an in-pattern and is
made up of in-pattern elements and an optional filter. These
in-pattern elements represent the elements from the input
model that are matched by the rule, as long as they satisfy
the filter. The 7o part of the rule is referred to as an out-pattern
and is made up of out-pattern elements which represent the
elements that are created in the output model. They con-
tain bindings, which are used to initialize the features of
the created elements. The feature initialized by a binding
can be either an attribute or a reference to another created
element.

In Listing 2, the transformation creates a Community from
each Country, as specified by R1. The six bindings of OPEI]
are used to initialize references. Please note that when the
same property representing a reference is initialized in more
than one binding (property persons in Bl11, B112, Bl13,

and B114 in our case), the result is the union of the elements
retrieved in all the bindings.

Let us now focus on B115, which initializes the townHalls
association of the created Community. It assigns the cities of
the Country which match the expression (c.cities). However,
due to the output metamodel, the tfownHalls association of
the created Community in the output model cannot point to
a City in the input model. In fact, what the association will
actually be pointing to is the element in the output model
created from the respective City element of the input model.
Therefore, there must be a rule that creates something from
City elements.

In our example, this is R6, which creates a TownHall from
the matched City. Therefore, B115 initializes the rownHall
association of the Community created in OPE] I by referenc-
ing the TownHall elements created from the City elements
referred to by the Country element matched in IPE]. To this
purpose, ATL uses an internal trace mechanism, where the
correspondences between elements in the input and output
models are tracked.

Listing 2 Families-to-Persons_Extended ATL Transformation

module Families2Persons_Extended:
create OUT:Persons_Extended from IN:Families_Extended:

rule Country2Community { --R1
from

c: Families!Country
to

--IPE11

cmm : Persons!Community (--0PELL
persons <— c.families—s>collect(fif.fathers), --B111
persons <— c.families—>collect(fif mothers), --B112
persons <— c.families-scollect(fif.sons) . --B113

persons <— c.families-s>collect(fif.daughters),--s114
townHalls <— c.cities, --B115
associations <— c.cities->collect(ctylcty.companies

—> collect(cmpiTuple{ct=cty,cm=cmp})) --B116
)}

rule Father2Man { --R2
from

p : Families!Parent

(p.family.fathers.includes(p)) --F2

to
m : Persons!Man (

fullName <— p.firstName + p.family.lastName
)}

--0PE21
--B211

rule Mother2Woman { --R3
from

p : Families!Parent --IPE31

(p.family .mothers.includes(p)) --F3
to
w : Persons!Woman (--0PE31
fullName <— p.firstName + p.family.lastName --B311
)}
rule Daughter2Woman { --R4
from
ch : Families!Child --IPE41
(ch.family.daughters.includes(ch)) --F4
to
w : Persons!Woman (--0PE41
fullName <— ch.firstName + ch.family.lastName --s411
)}
rule Son2Man { --R5
from
ch : Families:!Child --IPE51
(ch.family.sons.includes(ch)) --F5
to
m : Persons!Man (--0PES1
fullName <— ch.firstName + ch.family.lastName --&51
)}
rule City2TownHall{ --R6
from
c : Families!City --IPE61
to
th : Persons!TownHall --O0PE61
name <— c.name + ‘.TownHall . --B611
workers <— c.companies —> collect(cmplcmp.employees)
—> flatten() —> select(emliem.livesIn=c), --B612

committee <— cmt,
districts <— c.neighborhoods

@ Springer

B.J. Oakes et al.

).
cmt : Persons!Committee(

name <— c.name + .TownHall.Committee ’
)}

--0OPE62
--B621

rule CityCompany2Associationf{ --R7
from
ct : Families!City, --IPE71
cm : Families!Company --IPE72
(ct.companies.includes(cm)) --F7
to
a : Persons!Association(--0PE71
name <— ct.name + cm.name --B711
committee <— thisModule .resolveTemp(ct, 'cmt’) --B712
)}

rule Neighborhood2District{ --RS8
from
n : Families!Neighborhood
(Families!Family.allInstances ()
—> exists(fif.registeredIn=n)) --F8

--IPE81

to

d : Persons!District(
name <— n.name,
facilities <— n.schools —> select(schisch.ordinary

--0PES81

—> notEmpty()) —> collect
(schilthisModule .CreateOrdinaryFacility(sch)),--e811
facilities <— n.schools —> select(schisch.special

—> notEmpty()) —> collect
(schithisModule .CreateSpecialFacility(sch))
)}

--B812

lazy rule CreateOrdinaryFacility(--R9
from
sch : Families!School
to
of : Persons!OrdinaryFacility(--0PE91L
name <— " Ordinary.Facility .Service-for.school."
+ sch.name, --B911
members <— sch.students --B912
)}

--IPE91

lazy rule CreateSpecialFacility(
from
sch : Families!School
to
sf : Persons!SpecialFacility(--0PE101
name <— ’Special.Facility .Service.for.school .’
+ sch.name, --B1011
members <— sch.students --B1012
)}

--R10

--IPE101

For clarification purposes, Fig. 3 shows the creation of an
output model from an input model by applying the Families-
to-Persons_Extended transformation. The left-hand side of
the figure displays a model which conforms to the Fami-
lies_Extended metamodel seen in Fig. 2a. The right-hand
side of the figure presents the output model obtained,
which conforms to the Persons_Extended metamodel (cf.
Fig. 2b).

Note that attributes are ignored in Fig. 3, and classes and
references are colored to improve the readability of the fig-
ure. Elements are also given an identifier to indicate to which
type they belong (e.g., Cmpl is an element of type Com-
pany), and references have the same color as their source
element. In case of bidirectional references, the reference
has the colors of both elements, but tags describing a specific
end of the reference have the color of the source element.
For simplification and readability purposes, not all tags have
been included (for instance, there are missing livesIn tags),
although most of them are present. Since the attributes and
references of the created elements are initialized with bind-
ings, we have annotated the binding responsible for initializ-
ing each reference (again, attributes are ignored) in the output
model.

The central section of Fig. 3 shows the internal traces used
by ATL that keep information of which elements in the output
model are created from which ones in the input model and

@ Springer

the rule responsible for doing so. We can see that the traces
also keep information about the identifiers of the in-pattern
elements and out-pattern elements of each rule, something
specially useful for the implementation of the resolveTemp
operation (cf. Sect. 3.3).

Figure 3 thus illustrates what has been described before,
namely that Comm] is created from Ctryl by RI. Its town-
Halls reference is pointing to TH1, which has been created
by R6 from Ctyl, which belongs to Ctryl.cities, and assigned
by B115.

Both R2 and R3 take a Parent as input. Here, a filter is used
to determine whether the Parent is a father (R2) or a mother
(R3). For instance, parents Parl and Par2 are transformed
to a Man with R2, while Par3 is transformed to a Woman
with R3. The same thing happens with Children. Bindings
B111-B114 are used to initialize the person reference for the
Community created in OPEI1 for all parents and children.
We see that an OCL collect operation is necessary, since we
need to retrieve elements of specific types.

B116 shows a special case where the Tuple operator is
used. In this case, the collect operation retrieves pairs of { City,
Company} elements, and the output elements created by these
pairs are assigned to the associations reference. Therefore,
there must be a rule that takes these pairs in the in-pattern. In
our example, it is R7, composed of /PE71 and IPE72, where
F7 makes sure that the Company is located in the City. As
a result, following our example, Assol is created from Ctyl
and Cmpl.

B612 uses both the collect and select operators to pick only
those employees of the companies located in the matched City
(IPE61) that actually live in such city. In our example, Parl
and Par3 are selected, so the workers reference of TH1 points
to Wom?2 and Man2, created from Parl and Par3, respectively.

Finally, it is worth mentioning the use of lazy rules (R9
and R10). Lazy rules are only executed when they are called
from other rules. This means that they will create elements
only when they receive calls.

In our example, these rules are called from R8 and specif-
ically from bindings B811 and B812. Let us focus on binding
B811. RS creates a District (OPESI) from a Neighborhood
(IPESI) as long as there is at least one Family registered in
that neighborhood (F8). Then, for initializing its facilities
reference, in B8/1 it selects those schools in the Neighbor-
hood that have an ordinary Service and collects the result
produced by lazy rule CreateOrdinaryFacility.

This lazy rule (R9) receives as parameter the selected
schools. It creates an OrdinaryFacility (OPE91) from the
School (IPE91) and initializes its members reference with
the students of the school. In Fig. 3, we represent a joint exe-
cution of R8 and R9, since the latter is executed at the same
time as the former due to its invocation. The same situation
occurs with R§ and R10.

Full contract verification for ATL using symbolic execution

3.3 ATL semantics and transformation execution

The semantics of ATL define how an ATL transformation
is internally executed. However, the ATL language has been
described in the community in an intuitive and informal man-
ner, by means of definitions of its main features in natural
language [47]. This lack of rigorous description can easily
lead to imprecisions and misunderstandings that might hin-
der the proper usage and analysis of the language, and the
development of correct and interoperable tools. The other ref-
erence implementation of ATL is available as metamodels for
the language and its virtual machine and as a compiler from
the language to the virtual machine and an interpreter for the
virtual machine. The problem of this kind of implementa-
tion is that it is not abstract enough to provide meaningful
semantics and in an implementation-independent manner.
Therefore, with the purpose of later describing the map-
ping from ATL to DSLTrans, the aim of this subsection is
to explain the semantics of ATL and to instantiate them in
our running example.

The execution of ATL transformations is split into two
major steps: element creation and features initialization. This
two-step process, however, is not explicit in ATL and is
described here to reduce the conceptual delta between ATL
and DSLTrans.

The first step of the execution is the creation of tar-
get elements and the above-mentioned trace links, the latter
being created implicitly and automatically by ATL. In Fig. 3,

Input model

companies

neighborhoods/

registeredin
=[Nghbi}-. / - —; BSOS

registeredin| -

chools™ -,g

| o oesTo
Schl - n
h™ -
o
Srvl

ATL traces

this step creates all the elements in the output model (but
does not set their references nor attributes) as well as the
trace links specified in the central part of the figure. This
means that in-pattern elements are obtained from the input
model and out-pattern elements are created in the output
model.

In the second step, the features of the elements created
in the output model are set. This means that the bindings are
executed and resolved. In order to initialize the references,
ATL uses the internal trace links. Although the references are
automatically resolved as explained in the previous section,
there exists an operation, the so-called resolveTemp oper-
ation, which can be used to explicitly resolve references. It
makes it possible to point to any of the target model elements
generated from a given (sequence of) in-pattern element(s).
Itis specially useful (and, in fact, needed) when the reference
specified in a binding has to refer not to the first out-pattern
element created in another rule, but to any of the rest.

In our running example, B7I2 contains an operation of
this type. Thus, an Association contains a reference named
committee that has to reference the Committee created from
the City matched in IPE71. As we can see in R6, every City
creates a TownHall and a Committee. The latter is what we
want to be referenced from B712. Since it is the second
element created in the rule, we need the operation thisMod-
ule.resolveTemp(ct, ‘cmt’), where ct is the identifier of IPE7 1
and cmt is the identifier of the out-pattern element that cre-
ates the Committee (OPE62 in our example).

Output model

persons
_--*" (B113)

persons

persons

(B111)

workers
(B612)

workers

(B612)

= SRR INILES, committee
_____________ (B2} 8613)

townHalls
(B115)

I """" TH1 |
-------------- ssociations
>
d -
| SRS
facilities | t :
[, (B812)
sf
[SF1 facilities
I
' [OF1]

Fig. 3 Execution example of the Families-to-Persons_Extended transformation

@ Springer

B.J. Oakes et al.

As we highlighted in the previous section, the resolveTemp
operation provides the reason to store the identifiers of in-
pattern elements and out-pattern elements in the trace links.

3.4 DSLTrans representation

Figure 4 displays the DSLTrans transformation which cor-
responds to the ATL Families-to-Persons_Extended transfor-
mation shown in Listing 2. Let us mention here that we have
removed five rules from the figure to improve visual clar-
ity. There is a vertical dotted blue line for each of these rules,
located where the rules have been removed. The missed rules
are similar to those that surround them, and can therefore be
safely ignored in our explanation.

The process of constructing a DSLTrans transformation
from an ATL one is described in the next section. For
now, note that DSLTrans transformation obtained from ATL
through the higher-order transformation includes only one
rule per layer, meaning all rules execute sequentially. This is
due to the sequential semantics of ATL that we replicate in
DSLTrans.

Also, note that attribute copies are represented with arrows
from the ApplyModel of the rule to the MatchModel, such
as in rule Neighborhood2District, where the created District
gets the same name as the matched Neighborhood. The String
of an attribute of a created element can also be initialized with
the concatenation of several Strings. For instance, in rule
Father2Man, the full name of the created Man comes from
the concatenation of the first name of the matched Parent
and the last name of his/her Family. Or it can be assigned the
String of an attribute of an element in the MatchModel con-
catenated with a given String, such as in rule City2TownHall.

4 Mapping ATL into DSLTrans

In this section we first present the features of the declar-
ative part of ATL that we consider for the translation to
DSLTrans. Then, we describe the mapping between ATL
transformations and DSLTrans transformations, emphasiz-
ing the translation of selected OCL operators. Finally, we
explain the implementation of the mapping.

4.1 ATL subset selected

While the version of our translator from ATL to DSLTrans
presented at the MoDELS 2015 conference [35] considered
a large set of features available in the declarative part of the
ATL language, our current version considers practically the
complete set of features. As shown in Table 1, we now han-
dle helpers and conditions. Since we consider almost all the
features in the declarative part of ATL, we can assert that our

@ Springer

current implementation of the higher-order transformation is
sufficiently powerful to be of interest.

The only features that are not considered for the translation
are the using block and unique lazy rules.

The using block is rarely used in ATL model trans-
formations, as it is an optional mechanism for declaring
local constants in ATL rules. Consequently, the same rule
can be written without using this block by always writ-
ing the constant content instead of the constant identifier.
An example of an ATL transformation containing a using
block and an equivalent one without it can be found on our
website [3].

Regarding unique lazy rules, they would require special
logic to be translated to DSLTrans. In an ATL transformation,
the first time that a unique lazy rule is called, with a specific
(set of) parameter(s), it creates one or more elements in the
output model. The following times the rule is called with the
same parameter(s), the elements that were already created
are retrieved, but they are not created again. Translating this
behavior would require the inclusion of a condition on the
DSLTrans side. However, since there is no branching or any
mechanism to specify conditions in DSLTrans, we do not
translate unique lazy rules to DSLTrans. In any case, although
unique lazy rules are a powerful feature of ATL, not many
existing ATL transformations [2] use them.

Since DSLTrans is by default terminating and confluent,
we require that the ATL transformation is also terminating
and confluent before it can be translated to DSLTrans with
our approach. This is easily achieved by following some
guidelines and good practices when developing an ATL trans-
formation.

First, since we are using the declarative part of ATL,
helpers must not be used as global variables, so no infor-
mation is to be stored in them. Second, we have to ensure
that navigations terminate in a defined number of steps (by
‘step’ we mean the traversal of a reference), so we must avoid
recursive helpers and recursive lazy rules. Third, since we are
dealing with out-place transformations, only ATL transfor-
mations written with the default execution mode (and not the
so-called refining mode [46,47]) can be transformed. Please
note that the majority of current ATL transformations are
written using the default execution mode [2].

Finally, we require that the ATL transformation must not
throw any compilation nor run-time error [19]. Compilation
errors indicate, for instance, errors in the syntax, or that a
target model element is being used as input for a rule. Indeed,
the target model is not navigable and is only writable [27]. If
we want to access the target model in our ATL transformation,
we have to make explicit use of the resolveTemp function, as
shown in binding B712 of Listing 2 and explained in Sect. 3.3.
Run-time errors are thrown, for example, when the same
source model element has been used as input element for
two different matched rules.

Full contract verification for ATL using symbolic execution

WCounty fumilies g Farmity daughtes wChild

Fig. 4 DSLTrans version of the Families-to-Persons_Extended transformation

@ Springer

B.J. Oakes et al.

Table 1 Features of declarative ATL considered

Matched rules v Filters v
Lazy rules v OCL expressions v
Several bindings v Helpers v
Several InPatternElements v Conditions v
Several OutPatternElements v Using block X
ResolveTemp operation v Unique lazy rules X

In order to ensure all the mentioned points are satisfied,
we can use the approach by Troya and Vallecillo [47]. Thus,
the ATL transformation is translated to a formal domain,
Maude [18], where termination and confluence checks can
be easily performed.

Finally, let us mention that, in our current prototype, we
have used ATL versions 3.5 (in Eclipse Luna) and 3.6 (in
Eclipse Mars).

4.2 Mapping between ATL and DSLTrans
4.2.1 Semantics

In order to map ATL onto DSLTrans, we must explicitly rep-
resent the semantics of ATL in DSLTrans. This includes using
backward links to make explicit in DSLTrans the binding step
which is implicitly present in ATL for resolving associations
between elements created in the transformation. Please recall
that the semantics of ATL have been described in Sect. 3.3.
For clarification purposes, in the following discussion we
explain the mapping generically and then we instantiate it
for the Families-to-Persons_Extended case study shown in
Listing 2, to describe how the partial DSLTrans representa-
tion shown in Fig. 4 is built. Specifically, we explain how the
transformation from ATL to DSLTrans works, i.e., we textu-
ally define its semantics. The semantics for the mapping are
divided into two steps, to reflect the semantics of ATL.

Generic Semantics for Step I In the first step, every matched
rule in ATL is translated into a rule in DSLTrans. Matched
rules are declaratively matched by the ATL engine, so they
are not called explicitly from anywhere. In DSLTrans, rules
are given an explicit order, since a rule may match over ele-
ments that have been created in previous rules. In our case,
DSLTrans rules corresponding to matched rules are indepen-
dent from each other. Thus, their order does not matter, and
we apply the same order as in the ATL transformation.

The MatchModels of these rules contain the elements
appearing in the from part of the corresponding ATL rules.
There is an element for each in-pattern element (IPE) that
appears in the ATL rule. As well, if the ATL rule has a filter,
then some more elements and associations may appear in the
MatchModel in order to satisfy the conditions of the filter.

@ Springer

Boxes representing attributes can also appear inside elements
of the MatchModel, which occurs when such attributes are
used to initialize attributes in the ApplyModel.

Inthe ApplyModels of the rules created, there is an element
for each out-pattern element (OPE) declared in the ATL rules.
Normally, when more than one OPE is created in an ATL
rule, then some OPEs reference others. In DSLTrans, this is
specified as an association between the created elements in
the ApplyModel.

When there are bindings in the OPEs of the ATL rules
that are initializing attributes (not references), then these
attributes appear in the elements created in the ApplyModel
in DSLTrans. Recall that such bindings can be defined with
helpers as well. Besides, as previously mentioned, attributes
must also appear in the elements in the MatchModel if their
value is used to initialize the values of the attributes in the
apply part, and associations are created between them.

Finally, an attribute called ApplyAttribute appears within
the elements created in the ApplyModel in two cases.

First, whenever a value is assigned to any of the attributes
of the element in the ApplyModel. Second, if the DSLTrans
transformation is to be executed by the transformation
engine, as they are required for optimization purposes.

These ApplyAttributes are, in fact, the way DSLTrans sim-
ulates the internal traceability mechanism employed by ATL
explained in Sect. 3.3. Thereby, anytime an ApplyAttribute
appears in a created element, the association of this element
with the elements appearing in the MatchModel is stored
in the traces. Since maintaining these traces in DSLTrans is
expensive, traces are only created in the presence of an Apply-
Attribute. This use of traces is necessary when employing
backward links, as explained in the next step.

Please note that the presence of ApplyAttributes in the
rules is not reflected in the output models generated. In fact,
the ApplyAttribute name is a reserved keyword.

Running Example Instantiation for Step I This first step is
exemplified in Fig. 4 in the sequence of rules that goes from
Country2Community until Neighborhood2District. There
are six rules in such sequence, and two rules that have
been omitted, which correspond to Mother2Woman and
Son2Man. They are very similar to rules Father2Man and
Daughter2Woman. Therefore, these eight rules have a direct
mapping with rules R1-R8 in Listing 2.

Let us have a look at the Father2Man rule. The ATL rule
only has one in-pattern element, IPE21 in Listing 2, of type
Parent, and it also contains a filter. In the corresponding
DSLTrans rule, we can see that the Parent element is present,
and there is also another element and some relationships.
They correspond to the filter, as is explained in Sect. 4.2.2.

A number of rules such as CityCompany2Association,
Father2Man, and Daughter2Woman have MatchModel ele-
ments which contain boxes representing element attributes.

Full contract verification for ATL using symbolic execution

These attributes are used to initialized new attributes in the
ApplyModel, as represented by incoming arrows.

Let us focus now on the out-pattern. The rule
City2TownHall in cf. Listing 2 defines that the created Town-
Hall (OPE61) has a reference to the created Committee
(OPE62) through the association committee, as specified in
B613. In its corresponding DSLTrans rule (City2TownHall
in Fig. 4), the association committee is created from element
TownHall to element Committee.

Bindings that initialize attributes are present in our exam-
ple as B211, B311, B411, B511, B611, B621, B711, BS811,
B911, and B1011. Note that the last two bindings are in
lazy rules and will be explained in the second step of the
mapping. The initialization of such bindings can be seen in
rules Father2Man, Daughter2Woman, City2TownHall, City-
Company2Association, and Neighborhood2District in Fig. 4.
Note that, in this first step that bindings that initialize refer-
ences are ignored. This would be all remaining bindings.

Finally, the ApplyAttribute attribute is present in all the
rules except for Country2 Community.

Generic Semantics for Step 2 A rule in DSLTrans is created
for every binding that initializes the value of a reference in
the ATL transformation. Such bindings can include helpers,
whose content is considered in the translation as if it appeared
directly in the binding.

Again, these rules are independent from each other, so the
order does not matter. However, they must go after the rules
created in the first step in order to properly utilize backward
links as rule dependencies. We give them the same order as
the order of the bindings in the ATL transformation from
which the DSLTrans rules are created.

In the DSLTrans rules created in this step, the left part
of the ATL binding, which is the name of the association
that is being resolved in the binding, appears in the Apply-
Model. The source and target classes of the association are
also placed in the ApplyModel of the rules. If the source
and/or target classes of the association are abstract classes,
our mapping determines the specific element that has to be
added, as we see later in our running example. The elements
and associations placed in the MatchModel of the created rule
are those appearing in the right part of the binding. The right
part of bindings are expressed in terms of OCL expressions,
and we explain them in Sect. 4.2.2.

All the rules created in this step contain backward links. As
mentioned before, they allow matching over traces between
elements in the input and the output models of the trans-
formation. As explained in Sect. 2, when an element in the
ApplyModel is linked with a backward link to one or more
elements in the MatchModel, then the ApplyModel element
is not produced in the output model, but is instead referring to
elements that were already created in previous rules. This is
how the internal traces mechanism of ATL is explicitly mod-

eled in DSLTrans. Of course, an element in the ApplyModel
can be linked to more than one element in the Matched-
Model by backward links, and the other way around (several
backward links can depart from the same element in the
MatchedModel). This is equivalent to those traces in ATL
that have more than one source/target elements.

According to the explanation given in the first step of the
mapping, an ApplyAttribute attribute is also produced in the
elements in the ApplyModel in this step.

Lazy rules can also be present in those ATL bindings that
are initializing associations, so they are considered in this
step. In this case, the elements appearing within the lazy rule
are included in the DSLTrans rule created from the binding.
Now, the elements created in the MatchedModel are not only
those appearing in the right part of the binding, but also those
acting as matching elements in the lazy rule. Likewise, the
elements created in the ApplyModel also contain the elements
and associations created in the lazy rule.

Running Example Instantiation for Step 2 The rules cre-
ated in this step are all those that follow rule Neighbor-
hood2District in Fig. 4. Note that our transformation assigns
these rules a unique but long name. For simplification pur-
poses, this explanation will only use the first part of the name,
until the first capital letter appears.

The two copersons/...] rules are the mappings to bindings
B111 and B114, respectively. The two omitted rules corre-
spond to bindings B112 and B113, and they are very similar
to the two rules shown. In the DSLTrans rules created from
these bindings, the left part of the ATL binding, which is the
name of the association that is being resolved in the binding,
appears in the ApplyModel. The source and target classes of
such association are also placed in the ApplyModel of the
rules.

Let us focus on the first copersons/...] rule. The meta-
model in Fig. 2b indicates that the source class of the persons
relationship is Community, while the target class is Person.
Regarding the source class, it is also the class that is created
in the ATL transformation (OPE11 in our example), so it is
straightforwardly included in the DSLTrans rule. As for the
target class, the class Person is abstract. However we can
know which non-abstract class inheriting from it should be
chosen. This is resolved by navigating the OCL expression
appearing in the right part of the binding. B111 retrieves
elements of type Parent that have the role of fathers. There-
fore, according to the Father2Man rule, we know the target
element of the relationship must be of type Man.

Regarding the elements and associations appearing in the
MatchModel of the created rule, they are those appearing in
the right part of the binding. Since the right part of bindings
are expressed in terms of OCL expressions, we explain them
in Sect. 4.2.2.

@ Springer

B.J. Oakes et al.

In contrast to the two copersons/...] rules, the tworkers]... |
rule contains an element of type Person in the ApplyModel.
This rule is the mapping of B612. In this case, the target
element of the workers relationship can be of type Man or
Woman, and no distinction is needed. The only constraint
is that the Person must have been created from a Parent, as
indicated by its backward link.

To mention another example of backward links, exam-
ine again the two copersons/...] rules, where the element
Community refers to the Community created in the Coun-
try2Community rule, since it is linked with a backward link
with element Country. Likewise, elements Man and Woman
were created in rules Father2Man and Daughter2Woman,
respectively. This means that the only thing added in these
two rules is the association persons, whenever the Match-
Model is found in the input model.

In the acommittee]...] rule we see an example of an ele-
ment in the ApplyModel with more than one backward link. It
corresponds to binding B712, which initializes the committee
association. In the DSLTrans rule, the Association element
is linked backward with the Company and City elements.
Indeed, an Association is created from a Company and a City
by rule CityCompany2Association. The Committee element
is backwardly linked with City, since a Committee is created
from a City in rule City2TownHall. Binding B712 is actually
resolving the committee association by making use of the
ATL resolveTemp operation explained in Sect. 3.2.

Finally, let us see an example of lazy rules called from a
binding. In our running example, there are calls to lazy rules
in B811 and B812. The DSLTrans rule dfacilities/...] corre-
sponds to B811, while the DSLTrans rule created from B8§12
is very similar and is therefore omitted in our explanation.

In Listing 2 we can see that B811 is invoking the lazy rule
CreateOrdinaryFacility (R9), which creates an element of
type OrdinaryFacility. It also initializes the name attribute of
the created element and the association members. Therefore,
all this is included in the ApplyModel of the rule created from
BS811.

Regarding the members association, let us clarify that
the new element created by the lazy rule, OPE91, acts as
its source. The target is resolved by the OCL expression
sch.students, which returns an element of type Child (cf.
metamodel in Fig. 2a).

4.2.2 OCL expressions handled

One of the main challenges when analyzing an ATL transfor-
mation is to deal with the OCL expressions contained within
due to the large number of navigation possibilities that OCL
offers. Although there are some works dealing with the trans-
lation of OCL to graph domains [7, 10], DSLTrans has its own
peculiarities. For this reason, in this section we explain how
OCL expressions are translated to DSLTrans using our run-

@ Springer

ning example, since several OCL operators are present. The
most interesting ones are those that deal with collections.

First of all, let us recall that in ATL, OCL expressions may
appear in both filters and bindings. As well, they always navi-
gate the input model, as the output model is strictly writable in
ATL. In the two steps of the mapping from ATL to DSLTrans
explained in Sect. 4.2.1, filters are translated in the first step,
while bindings are considered in the second step. However, in
both cases, the elements and associations appearing in OCL
expressions are included in the MatchModel of the generated
DSLTrans rules.

Let us start by explaining navigations in filters and then
discuss those appearing in bindings, which may contain calls
to lazy rules.

OCL Expressions in Filters Please recall that elements
appearing in the ApplyModel of DSLTrans rules which do
not have backward links are created from those elements
in the MatchModel that are also not connected to backward
links.

In the first step of the mapping (cf. Sect. 4.2.1), recall that
there are no backward links in the rules created. Therefore,
traces are created between the elements of the MatchModel
and the ApplyModel whenever the ApplyAttribute is present.
However, we do not want the elements in the MatchModel
that are introduced due to the filter condition to be included in
such traces. This is the reason why DSLTrans distinguishes
in the MatchModel between AnyMatchElements and Exists-
MatchElements.

AnyMatchElements correspond to those in-pattern ele-
ments appearing in the ATL rules and must be included in
the traces created. They have the V symbol in their graphical
representation. On the other hand, ExistsMatchElements are
used to state conditions over AnyMatchElements, and we use
them in our translation in order to insert elements that appear
in the OCL expressions of the filters of the ATL transforma-
tion. They have the 3 symbol in their graphical representation
and are not considered in the traces.

The reason to decide whether to include an EXxists-
MatchElement or an AnyMatchElement in the MatchModel is
simple and is according to the content of the filter. If we have a
navigation in the filter that reaches a certain element, but this
element does not appear in the matching part of the ATL rule
(from part), then it is represented by an ExistsMatchElement.

We can see two examples of our running case study in
Fig. 5. In the filter of Fig. 5a, we can see that Parent (variable
p) is the element performing the match, and Family (reached
through the family reference) is used as part of the condition.
As for the filter of Fig. 5b, the element used as part of the
condition is again a Family, in this case reached with the use
of the alllnstances and exists operations. As we see in both
cases, all references appearing in the OCL expression of the
filter are included.

Full contract verification for ATL using symbolic execution

from
: Families!Parent
(p.family.fathers.includes(p))

+ Parent 3 Family

fathers

family

(a)

from
n : Families!Neighborhood
(Families!Family.allInstances(
—> exists(f|f.registeredIn=n)

y Neighborhood 3 Family

registeredin
(b)

Fig. 5 Filter elements translated to ExistsMatchElements

from

ct : Families!City,

cm : Families!Company
(ct.companies.includes(cm))

y City y Company
companies

Fig. 6 Filter elements translated to AnyMatchElements: City-
Company2Association rule

Conversely, if the elements that are reached through nav-
igations do appear in the matching part of the ATL rule,
then AnyMatchElements are created in the DSLTrans rule.
An example is shown in Fig. 6.

OCL Expressions in Bindings For rules generated in the sec-
ond step of the mapping the right part of the bindings are
included in the MatchModel of DSLTrans rules. In these
rules, all ApplyModel elements are connected with backward
links to elements in the MatchModel, so we do not need to
include ExistsMatchElements.

Again, elements that are reached through navigations
(whether OCL collection operations are used or not) must
be introduced in the MatchModel. Figure 7 shows two exam-
ples where in the two bindings select and collect operators
are present. All references that are included in both bindings
are reflected in the MatchModels created from them, and
all elements reached through said references are represented
with AnyMatchElements.

OCL Expressions in Bindings That Call a Lazy Rule We
have stated that, since elements have backward links in the
MatchModel of those rules created from bindings, they will
be created as AnyMatchElement. However, there is a special
case, and this is when there is a call to a lazy rule in the
binding, as we can see in Fig. 8.

from
c: Families!Country
to
cmm : Persons!Community (
persons <— c.families—>collect(f|f.fathers)

y Country families w Family fathers y Parent

(a)

from

¢ : Families!City

to

th : Persons!TownHall(

workers <— c.companies —> collect(cmp|cmp.employees)
—> flatten() —> select(em|em.livesIn=c)

Company Ci
. employees y Parent livesin vety

(b)

Fig. 7 Binding contents translated in MatchModels

from

n : Families!Neighborhood

to

d : Persons!District(
facilities <— n.schools —> select(sch|sch.ordinary]
—> notEmpty()) —> collect
(sch|thisModule.CreateOrdinaryFacility(sch))

yw Meighborhood schools y5chool ordinary J Service

Fig. 8 Binding that contains a call to a lazy rule

Lazy rules have one or more input parameters (an element
of type School in our case). The DSLTrans rules created from
bindings that contain calls to lazy rules produce new ele-
ments, which are precisely the elements created from the
lazy rule. This is because the content of the lazy rule is con-
sidered when creating the DSLTrans rules, as explained in
Sect. 4.2.1. For this reason, the DSLTrans rule may contain
elements in its MatchModel that refer to properties of the
element(s) passed as parameters to the lazy rule.

This is the case, in our example of Fig. 8, with the element
Service linked with the ordinary reference to the School ele-
ment. Since no backward link is connected to this element,
it is included as an ExistsMatchElement.

4.3 Implementation

The mapping between ATL and DSLTrans has been imple-
mented with a higher-order transformation (HOT) developed
in ATL. Itis the ATL2DSLTrans HOT shown in Fig. 9, which
is explained in the following together with its inputs and out-
put.

The HOT is composed of three main matched rules for
realizing the two-step mapping described in Sect. 4.2.1. The
first one matches a matched rule of the ATL Transformation
taken as input and produces a rule in the DSLTrans Trans-

@ Springer

B.J. Oakes et al.

formation generated as output. As we mentioned before, in
this step we also create the corresponding attributes and filter
conditions. In order to know whether a binding in the ATL
transformation is initializing an attribute or a reference, we
need information of the Output Metamodel taking part in the
ATL transformation.

Several lazy and unique lazy rules for creating elements,
associations, and attributes are invoked from this matched
rule. This rule also stores in an internal structure the traces
that keep the relation between the elements of the Match-
Model and ApplyModel of the DSLTrans Transformation
rules that are generated, which is useful for generating back-
ward links in the second step.

The second main matched rule deals with the creation of
DSLTrans rules from ATL bindings initializing references
that do not call any lazy rule, and the third one transforms
those bindings that do invoke a lazy rule into DSLTrans rules.
Thus, they take as input a binding where a navigation over the
input model is realized and produce a rule in the DSLTrans
Transformation. This is why we need the Input Metamodel
of the transformation as input for the HOT.

These two main rules implement the second step of the
mapping described in Sect. 4.2.1. Again, these rules call
several helpers, lazy, and unique lazy rules available in
the ATL2DSLTrans HOT in order to create the elements
appearing in the DSLTrans Transformation rules and the
associations between them. The last step in these two rules
is to create the backward links between elements in the
MatchModel and the ApplyModel, for which the structure
previously mentioned is used.

As another input for the ATL2DSLTrans HOT, we use a
model where the OCL navigations appearing in the filters
and the bindings of the input ATL Transformation are parsed
(model OCL Types Extracted in Fig. 9).

In this parsing, we remove all the collection operators
appearing in the navigations in order to obtain the types
appearing in such navigations. Since ATL does not offer any
support nor API to statically obtain the types of an OCL
expression, we make use of another HOT, namely OCL Types
Extraction HOT, that returns the model with the OCL navi-
gations parsed.

Input/Output

Metamodels l
DSLTrans

ATL2DSLTrans
ATL HOT Transformation

Transformation i
OCL Types
Extracted
i
j OCL Types Extraction
HOT]
T

Fig. 9 Mapping implementation

@ Springer

This model is used by the ATL2DSLTrans HOT for two
purposes, first, when creating the elements and associations
in the MatchModel of a DSLTrans rule that correspond to the
filter of an ATL rule, which is realized in the first step of the
mapping, and second, for creating the elements and associa-
tions in the MatchModel of a DSLTrans rule that correspond
to the navigation of a binding, which is realized in the second
step of the mapping.

The rationale for having two separated HOTs is twofold.
First, the result of the OCL Types Extraction HOT can be
used with a different purpose and, second, we reduce the
complexity of the ATL2DSLTrans HOT.

As a summary, the pseudocode presented in Fig. 10
describes, at a high level, the two-step algorithm that maps
ATL transformations to DSLTrans transformations. Using
the same notation as before in the paper (cf. Sect. 3.2), MR
stands for matched rule, LR for lazy rule, IPE for in-pattern
element, OPE for out-pattern element, and B for binding.

5 Contract prover

This section will describe the operation of our contract prover
such that contracts are proven on all executions of a DSLTrans
transformation.

The contract prover we describe here is the engine of the
SyVOLT tool, which can currently be used to develop and
verify DSLTrans transformations within the Eclipse environ-
ment [1,32,45]. Examples of contracts we prove are also
presented, along with a brief discussion of the expressibility
of the contract language.

5.1 Contract-proving overview

Given a transformation written in the DSLTrans transfor-
mation language, our contract-proving technique can prove
whether pre-/post-condition contracts will hold or not hold
on all executions of the transformation. If a contract holds,
then whenever the pre-condition of the contract matches over
an input model, then the post-condition of the contract will
match over the corresponding output model.

For example, Fig. 11 describes a contract to be proved
over all transformation executions for the extended Families-
to-Persons transformation. An informal statement for this
contract is: ‘an input family with a father, mother, son and
daughter should always produce two men and two women
in the output community’. Note that we employ backward
links as part of the contract language, where as they are used
to require that the output elements be generated from the
attached input elements, similar to their use in DSLTrans
rules. Our contract prover is then able to prove whether or not
this contract will hold for all transformation executions, and

Full contract verification for ATL using symbolic execution

Input: Input-MM, Output-MM, ATL_Trans, OCL_Parsed
Output: DSLTrans_Transformation
: for all MR € MatchedRule do

: Create DSLTrans rule

/| Beginning of Step 1

1

2

3: for all IPE € MR do

4: Create AnyMatchFElement
5: end for

6: if MR contains Filter then
7: [Create EzistsMatchElements]
8: Create MatchAssociations
9: end if

10: for all OPE € MR do

11: Create ApplyClass

12: for all B € OPE do

/| May happen or not

13: if B initializes an attribute then

14: Create ApplyAttribute in ApplyClass

15: if Attributes from an IPE are used in B then
16: Create MatchAttribute in MatchElement

17: end if

18: end if

19: end for

20: end for

21: Create corresponding ApplyAssociations

22: end for

23: for all MR € MatchedRule do
24: for all OPE € MR do
25: for all B € OPE do

/| Beginning of Step 2

26: if B initializes a reference then

27: Create DSLTrans rule

28: Create AnyMatchElements with the OCL_Exp of B
29: Create MatchAssociations

30: Create ApplyElements, for OPE and the type of B
31: if B invokes a LazyRule (LR) then

32: for all OPE in LR do

33: Create ApplyElement

34: end for

35: end if

36: Create corresponding ApplyAssociations

37: end if

38: Create corresponding BackwardLinks

39: end for

40: end for

41: end for

Fig. 10 ATL to DSLTrans HOT summary

produce any counter-examples if they occur. Further exam-
ples of contracts are found in Sect. 5.3.1.

Contracts are proved through a process that first symboli-
cally constructs all possible executions of the transformation,
producing a set of path conditions. Each path condition rep-
resents the execution of a set of transformation rules, by
containing the input and output elements which are produced
by the execution of those transformation rules.

For example, the path condition in Fig. 12 represents the
execution of three rules in the transformation. This repre-
sentation includes the input and output elements that will be
present in the input and output models if these three rules exe-
cute. The set of path conditions produced by the prover will
therefore partition the set of valid executions of the transfor-
mation, where each execution is an input/output model pair.

[£) Pos_FourMembers

Fig. 11 A contract to verify that two Woman and two Man elements
are produced from the corresponding Members

famil

Parent Family| Country'f—,ll—| Family l—h| Child |
mothers anpiiies daughters
Woman Communityl

Fig. 12 Anexample path condition representing the execution of three
rules

Woman

persons

This technique was first proposed in [30] and further detailed
in [31].

Pre-/post-condition contracts form an implication, which
needs to be checked for each path condition that has been gen-
erated by the proving algorithm. In broad terms, a contract
holds on a path condition if either the contract’s pre-condition
elements cannot be found in the path condition, or the con-
tract’s pre-condition together with its post-condition can be
found in the path condition. The contract does not hold on the
path condition if its pre-condition can be found in the path
condition but its post-condition cannot. Finally, a contract
holds for a transformation if it holds for all of its generated
path conditions.

Contracts are formally described in [31], while extensive
discussion of the contract language is found in the Ph.D.
thesis of Gehan Selim [41]. Sections 5.3.1 and 5.4 present
further contract examples, while Sect. 5.5 briefly discusses
the expressiveness of the contract language.

@ Springer

B.J. Oakes et al.

5.2 Path condition creation

As described in [32], our contract prover constructs all arti-
facts used for contract proof through matching and rewriting
of typed graphs. Therefore, the first step for the contract-
proving process is to create T-Core matcher and rewriter
primitives from each of the rules in the DSLTrans transfor-
mation [44]. These model transformation primitives are at
the core of our prover, allowing us to reason about how rules
could overlap with each other during transformation execu-
tion, and to perform the graph rewriting necessary for our
technique.

Note that this use of reasoning about the transforma-
tion under study as explicit graphs is in opposition to other
approaches in the literature, where the transformation speci-
fications are translated into a SAT solver or theorem prover,
and then the proving mechanisms for those tools are used. A
further discussion of our approach versus that in the literature
can be found in [41].

In order to fully reason about all input models to a trans-
formation, our contract prover creates a set of artifacts that
represent all possible executions of the transformation. These
artifacts are created by symbolically executing all rules in
the transformation, taking into account rule overlapping and
dependencies between rules. The rule combinations that are
created are termed path conditions.

For example, the first path condition could represent the
case where no rules in the transformation execute. The next
path condition is the case where only the first rule executes,
the next is where only the second rule executes, and a fourth
path condition is where both the two rules execute.

Note that in our path condition creation process, we only
consider one execution of each rule. That is, either a rule
does not execute (and does not appear in the path condi-
tion), or we assume that it executes some number of times
(and the rule appears once). This restriction is due to our
abstraction, where we symbolically represent many execu-
tions of the same rule by the rule being present only once in
each path condition. This abstraction is necessary for analysis
purposes, as the infinite number of transformation executions
must be covered by a finite number of path conditions. Note
that this abstraction is possible because of the monotonicity
of a DSLTrans transformation: a rule can only add elements
to the output model of a DSLTrans transformation, but never
remove them.

As the transformation is made of layers, the symbolic-
execution process moves through each layer and determines
how rules may interact with each other. Unlike generating
the powerset of all rules, these rule interactions may in fact
decrease the number of path conditions generated by the
prover as certain combinations of rules are proven infeasible.

For example, consider a rule R1 which matches on an
A element, and a rule R2 which matches on an A element

@ Springer

connected to a B element. During an execution of the trans-
formation, it would be impossible for R2 to execute without
R1 also executing, as the match graph of R1 is a subset of the
match graph of R2. Therefore, the rule R1 is ‘subsumed’ by
the rule R2. Our prover is able to detect these subsumption
interactions and resolve them in a step just prior to path con-
dition generation. This lowers the number of path conditions
created by disallowing certain rule combinations, as further
discussed in [43].

As well, DSLTrans rules can also define backward links,
as described for the extended Families-to-Persons transfor-
mation in Sect. 4.2.1. Recall that these backward links make
dependencies on elements created by earlier rules. Specifi-
cally, these backward links require that the connected element
in the apply part of the rule was created from the connected
element in the match part of the rule, by matching over
traceability links created during the execution of the transfor-
mation. This functionality is therefore similar to the implicit
binding step present in ATL, as discussed in Sect. 4.2.1 under
the title Generic Semantics for Step 2. During path condi-
tion construction, these backward link dependencies prevent
some rules from executing, further decreasing the rule com-
binations possible.

5.2.1 Rule interaction cases

As mentioned, our contract prover combines rules from
different layers in the transformation to generate the path
conditions. This section will now summarize the three cases
in which a rule in a layer may combine with a path condition
from a preceding layer. This information is presented to give
the reader a sense of the complexities behind the symbolic
execution of these rules, and a greater understanding of how
path conditions represent executions of the transformation.
For interested readers, a formal treatment of these cases is
found in [31].

Note that backward links are represented by thick dashed
lines between the match and apply elements in the figures
below. Traceability links have also been added between ele-
ments in rules, and are represented by thin unbroken lines.
For clarity, we omit association labels in the figures.

Empty Path Condition The path condition generation process
begins with the empty path condition. As mentioned, this
represents the set of all transformation executions where no
rules execute. As rules are combined with this empty path
condition, match and apply elements will be placed in the
path condition. These elements will symbolically represent
elements present in the input and output model of the trans-
formations represented by that path condition.

No Dependencies In the first case for rule interaction, the rule
contains no backward links. In the path condition generation

Full contract verification for ATL using symbolic execution

PC Father2Man
Vi
Country Parent Family
7
Community Man
(a)
PC PC combined with Father2Man
Country Country Parent | Family
Community Community Man
(b)

Fig. 13 Combination example where the rule has no dependencies. a
Path condition and rule to combine. b Two path conditions produced
by combination

algorithm, two different path conditions will be produced.
The first path condition produced represents the possibility
of the rule not executing, while the other path condition pro-
duced represents the possibility of the rule executing.

An example of this case is displayed in Fig. 13, where the
path condition PC is combined with the rule Father2Man.
Note that the example path condition PC already contains
Country and Community elements, to represent the symbolic
execution of the rule Country2Community. The two path
conditions on the right-hand side of Fig. 13 show one path
condition which is identical to PC, and one path condition
which also contains the elements from the rule Father2Man.

Unsatisfied Dependencies For the second case in rule inter-
action, the latter rule contains backward links that cannot be
found in the path condition. This implies that the rule cannot
execute. The old path condition is retained, and no new path
condition is created.

This case is represented by Fig. 14. Note that the rule
cotownHalls|... | contains backward links, which require that
a Community element to have been created by a Country
element, as well as a Townhall element to have been created
by a City element. As this second backward link cannot be
satisfied by the elements in PC, the rule cotownHalls/...]
cannot execute. Therefore, only the path condition PC is
retained and no new path condition is created.

PC cotownHalls[...]

Country Country City

Community Community—» Townhall

(a)

PC

Country

Community

(b)

Fig. 14 Combination example where the rule’s dependencies are not
satisfied. a Path condition and rule to combine. b One path condition
produced by combination

Satisfied dependencies Finally, the most difficult case is
where the backward links match onto the path condition,
over the traceability links present. Therefore, the rule may
or must execute, depending on whether the elements in the
match part of the rule already exist in the path condition. In
this case, a new path condition is created for every possibility
of how the rule may be matched onto the path condition.

In the partial satisfiability case, not all elements of the
rule can be found in PC. Figure 15 shows the combination of
the path condition PC with the rule coassociations]...]. Note
that the rule contains associations between the Country and
City elements, as well as between the Country and Company
elements. However, these associations are not present in the
path condition PC.

As the associations are not present in PC, this indicates
that there is the possibility that the input model may not con-
tain these associations between these elements. Therefore,
two path conditions are produced. One path condition repre-
sents the case where the input model does not allow for the
rule coassociations/...] to execute. The other path condition
produced will include these associations, as it represents the
case where the rule will execute on the input model. Note
that if the rule might match at multiple locations on PC, a
new path condition would be produced for each location.

@ Springer

B.J. Oakes et al.

PC coassociations[...]

‘

T
T 7

i
7/
[|,

1
Community| |Association ‘

v

Community|| || Townhall | [committee

FAsson:iation

(a)

PC PC merged with coassociations|...]

‘
H | coromr W oo

]
Country

Community|| || Townhall | |committee Community|| || Townhall | |Committee

TAssomanon TAssociation

(b)

Fig. 15 Combination example where the rule’s dependencies are par-
tially satisfied. a Path condition and rule to combine. b Two path
conditions produced by combination

PC R
’ Country ~>< City ti Company City Company
' s |
RN
AN

Community Townbhall Committee | | |Association

(a)

PC with R 'glued'

Country ¥ City] Company

Community Townhall Committee [€—Association

(b)

Fig. 16 Combination example where the rule’s dependencies are
totally satisfied. a Path condition and rule to combine. b One path con-
dition produced by combination

The complement to the partial satisfaction case is the total
satisfaction case. In this case, the rule’s required elements
are all present in the path condition. Therefore, the rule must
execute for the transformation executions represented by that
path condition.

Figure 16 demonstrates the case where the dependencies
of the rule acommittee/...] are totally satisfied by the path
condition PC. Note that all backward links in the rule can be
found in PC, as well as the required associations.

The path condition produced is built by combining the rule
onto the path condition locations at the location(s) where
the rule matches. Note that in Fig. 16, an association has

@ Springer

been built between the Association and Committee elements.
As with the partial satisfaction case, the rule may match at
multiple locations.

Attribute Setting The setting of attributes for rule elements
is also symbolically executed in path condition construction.
Essentially, we store in the path condition the equations sta-
ting the values for the attributes as they are assumed by the
rules, and in subsequent rules we check for value compati-
bility of the match elements being matched. If the conditions
on the attributes on the path condition element and the rule
element are conflicting, no path condition is generated.

Note that a fairly trivial solver is currently used, as the only
available attribute data type in DSLTrans is String. However,
our approach is not overly restricted by this approach. From
a pragmatic viewpoint, we note that our industrial case study
only manipulates Strings.

More generally, DSLTrans has been used to write many
useful transformations with models that have only Strings as
attributes. This is because DSLTrans specializes in language
translations, as described in [33]. Model transformations of
this kind typically do not require complex computations over
attributes and the bulk of the work is achieved by node match-
ing and rewriting. String attribute data is mostly copied over
to the generated model or concatenated with other String
data.

A possible workaround to the restriction of only having
available the String type is to convert non-String attributes
and operations into Strings, such that they can be manipu-
lated by the transformation. Then, each output String can be
evaluated to produce the value in the original type. Note that,
using this method, no operations of algebras other than the
String algebra can be executed by the transformation engine.

A more holistic approach would be to introduce additional
data types in the DSLTrans language itself, thus allowing the
execution of operations of other algebras. However, much
care needs to be used when introducing new data types in
DSLTrans, such that those types do not introduce potential
non-terminating computations. That would invalidate the fact
that all DSLTrans transformations terminate. Additionally,
a more powerful solver would also be necessary to allow
path condition construction for a DSLTrans extended with
additional data types.

Partitioning Transformation Executions Following this rea-
soning about the three cases for interactions of rules, all rules
in the transformation are examined and combined into path
conditions. This is performed by examining each layer in the
DSLTrans transformation in turn.

For the first layer, the empty path condition is combined
with each rule. Then for each subsequent layer n, the set
of path conditions produced by layer n-/ are combined with
rules from layer n. For example, the path condition examined

Full contract verification for ATL using symbolic execution

famil
Parent Family Country]| — Family Child
fanilies daughters
mothers
Woman CommunityI

Fig. 17 Anexample path condition representing the execution of three
rules

Woman

persons

in the total satisfiability case above will have been produced
by the layer containing coassociations/...], as in the partial
satisfiability case.

The resulting path conditions at the end of this process
will represent all viable sets of rules that could execute in the
transformation. The infinite set of transformation executions
will therefore be partitioned by the finite set of path condi-
tions [31]. As each rule contains match and apply elements,
the path condition thereby define which elements are present
in the input and output models for that partition of transfor-
mation executions. Note that the empty path condition, which
contains no elements, matches all other transformation exe-
cutions not represented by another path condition.

For example, Fig. 17 symbolically represents the execu-
tion of three rules from the extended Families-to-Persons
transformation: Country2Community, Mother2Woman, and
copersonsSolveRef[...[Woman. Note that the Community
element was produced from the Country element in the Coun-
try2Community rule, and was matched over by the backward
link dependency in the copersonsSolveRef]...[Woman rule.
This path condition represents all transformation executions
where these three rules execute, and thus presents the input
and output elements and associations which are known to
exist if this set of rules executes.

This abstraction of transformation executions by path con-
ditions forms the basis for our technique of contract proving,
where proving contracts on the set of produced path condi-
tions allows us to reason about how the contract holds on the
transformation’s input/output model pairs.

5.3 Contract-proving process

As path conditions are constructed through reasoning about
the interaction of transformation rules, the structure of a path
condition is very similar to that of a DSLTrans rule with a
match graph and an apply graph, as seen in Fig. 17.

The meaning of a particular path condition is, ‘if the ele-
ments in the top component of the path condition are in the
input model, then the elements in the bottom component will
be in the output model.” Recall that this matches the intended
meaning of a contract: ‘if the elements in the pre-condition
are found in the transformation’s input model, then the post-
condition elements should be found in the output model’.

[£] Neg_DaughterMother

.

Fig. 18 A contract to verify whether a Man element will be produced
from a Family containing a daughter element and a mother element—
this contract will not hold

Therefore, to prove that a contract holds or not on a path
condition, it is sufficient to see whether the elements in the
contract can be matched onto the path condition, as described
in [31].

There are three cases for determining the status of a con-
tract:

— If the pre-condition of the contract, including backward
links, does not match the path condition, then the contract
is not applicable for that path condition.

— If both the pre-condition and post-condition match, then
the contract does hold on that path condition.

— If the pre-condition matches, but the post-condition does
not match, then the contract does not hold on that path
condition.

Note that a contract may be expected to not hold in all
cases for a transformation. For example, consider the con-
tract DaughterMother, reproduced in Fig. 18. The informal
statement for this contract is ‘a family with a mother and a
daughter will always produce a community with a man’. Itis
easy to see that an input model which contains only mother
and daughter elements should not produce a man in the target
community.

Our contract prover will then find multiple counter-
example path conditions which cause the contract to not
hold, such as the path condition in Fig. 17. Note that the pre-
condition of the contract does match onto the top component
of the path condition, while the Man element in the contract
post-condition cannot be found in the bottom component of
the path condition. Thus the failure of this contract gives fur-
ther assurance that the transformation is working correctly,
as daughters and mothers are not accidentally transformed
into men. As this result is expected, this allows the transfor-
mation builder to have increased confidence in the validity
of the transformation.

@ Springer

B.J. Oakes et al.

If a contract fails to hold on the transformation and it was
not expected to fail, then this indicates an error with either
the contract or the transformation. The prover will report
(and optionally draw) the path conditions which the con-
tract did not hold on. As well, a minimal path condition is
reported, which represents the smallest combination of rules
that fails. This allows the transformation developer to iden-
tify those rule combinations wherein an error may occur,
and change the transformation or contract accordingly. Note
that our technique only identifies the path conditions where a
problem arises. Identification of the erroneous elements and
suggestions for repair are not handled at this time.

Note that, despite the fact that the pre-condition of
the DaughterMother contract cannot be (isomorphically)
matched in the path condition in Fig. 17, the pre-condition
of the contract is still found in that path condition. This is so
because there are input models matched by these two rules
where the two distinct Family elements belonging to the two
separate rules will match over the same family instance—
remember that in DSLTrans rules can match over the same
elements in the input model. The relation between the pre-
condition of contracts and path condition is thus such that,
any possibility of overlaps (or absence thereof) between ele-
ments of the same type belonging to two or more different
rules in the path condition, is considered as a matching pos-
sibility for the pre-condition of the contract.

The relation between the contract and path condition packs
thus more information than a simple graph isomorphism. Itis
a mixed partial surjective/injective homomorphism between
the path condition and the contract typed graphs: while the
surjection allows ‘forgetting’ that two or more elements in a
path condition belong to different rules, the injection guar-
antees that elements belonging to the same rule in the path
condition have an isomorphic counterpart in the property.
Further examples, as well as a formalization of this relation
can be found in [31].

In the case that the contract must explicitly reason about
the multiplicity of Family elements, the contract language
includes propositional logic, as in Sect. 5.3.1.

5.3.1 Further contract examples

Our contract language also allows reasoning about the
attributes of elements in the models. Figure 19 describes a
contract determining if the full name of the produced Person
has been correctly created from the last name of the Family
and the first name of the Member.

Contracts can also be combined using propositional logic
and pivots to enhance the expressiveness of the contract lan-
guage [41,43]. For example, we present a contract for the
original Families-to-Persons transformation in Fig. 20. This
contract demonstrates the use of propositional logic in our
contract prover to form an ‘if, then NOT” implication between

@ Springer

[2) Pos_MotherFather

[Z5 Member [, Member

[, Family

firstName firstName

lastName

A

Fig. 19 A contract to verify proper construction of the name attribute
in the output model

[£) communityPerson_if

[Z5 CommunityRoot [25 Person

pivot pivot

A COMMUNITY A PERSON

[2) communityPerson_then

[£5 CommunityRoot

[Person

pivat pivot

A coMMUNITY

A PERSON

(b)

Fig. 20 Using propositional logic to express ‘if, then NOT” contracts

the two contracts. For this combination contract to be true,
for each path condition where the first contract holds, the sec-

2 The logical connections between the contracts is not represented
graphically.

Full contract verification for ATL using symbolic execution

ond contract must not hold and the elements marked by the
pivot attributes must be the same. This contract’s informal
statement is ‘If a community contains any people, then that
community does not contain two (or more) people’. There-
fore, this contract expresses constraints on the multiplicity
of elements, as will be further discussed in Sect. 5.5.

Note that the contract language we present in this paper
relies only on constructs that are found in the input and out-
put metamodels, plus traceability links. Given that both ATL
and DSLTrans operate on EMF metamodels, the contract
language can thus be used seamlessly to describe pre-/post-
conditions we wish to check on either ATL or DSLTrans
transformations. This fact is a major advantage for our work:
contracts can be expressed exactly in the same language and
have the same semantics for both an ATL transformation and
its semantically equivalent DSLTrans representation.

5.4 Contract results

This section will present the nine contracts we have created
for the extended Families-to-Persons transformation, to illus-
trate the utility of contracts for verification.

366 path conditions were created for this transformation,
representing a finite partition of the infinite set of the transfor-
mation’s possible executions. Then, each of the nine contracts
were tested against each path condition. Each contract is
detailed here as a tuple of an informal statement, the graphical
representation, and how many path conditions the contract
succeeded or failed on.

Note that a contract’s success here means that both the
contract’s pre-condition and post-condition (including back-
ward links) matched onto the path condition, while failure
means that the pre-condition matched, but the post-condition
did not. As well, the contract still holds on path conditions
where the pre-condition did not match, which is the remain-
der of the path conditions.

If the contract does not hold on some path conditions,
and therefore on not all transformation executions, a brief
explanation will describe the rule interactions that prevent
the contract from holding.

Note that this section includes contracts that we expect
to fail for the transformation. As mentioned, these contracts
increase our confidence in the correctness of our transfor-
mation, as the prover will produce counter-example path
conditions where the contract does not hold. As the path
condition represents the execution of a particular set of trans-

formation rules, this allows the user to reason about the
interaction between the rules, and determine whether the
transformation is erroneous or not.

Note that the following division of contracts into sections
is primarily for readability, as they address different areas of
the source and target metamodels.

5.4.1 Families-to-Persons contracts

Pos-FourMembers

Statement: A Family with a father, mother, son and
daughter should always produce two Man and two
Woman elements in the target Community.

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 137

Path Conditions Failed On: 0

_ ; Pos_FourMembers

H

.
s
H
H

Pos-MotherFather

Statement: The full name of a produced Person is cor-
rectly created from the concatenation of the first name of
the Member and the last name of his/her Family
Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 236

Path Conditions Failed On: 0

@ Springer

B.J. Oakes et al.

[B) Pos. MotherFather '[B Pos_TownHallComm

[Z5 Member 2 Famiy

firstName lasiName

Pos-AssocCity

Statement: A Country that contains a City with a Com-
pany should produce a Community with a TownHall and
a Committee

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 287
Neg-DaughterMother Path Conditions Failed On: 0

Statement: A Family with a mother and a daughter will
always produce a Community with a man

Expected Result: Does not hold for all path conditions
Path Conditions Succeeded On: 178

Path Conditions Failed On: 42 = e =
Explanation: A Man element will not be produced from

[2) Pos_AssocCity

an all-female Family

'[2) Neg_DaughterMother

Pos-ParentCompany

Statement: If a Parent worksln a Company, the Person
created from him/her should be within the workers of the
TownHall created from the City where the Person lives
Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 222

Path Conditions Failed On: 0

5.4.2 Location contracts

Pos-TownHallComm @ Pos_ParentCompany
Statement: A TownHall and a Committee are created for

every City, and the created TownHall must have the cre-

ated Committee as its committee

Expected Result: Holds for all path conditions
Path Conditions Succeeded On: 352

Path Conditions Failed On: 0

@ Person

@ Springer

Full contract verification for ATL using symbolic execution

Neg-CountryCity

Statement: If the Country has at least one City, then at
least one Association should be created

Expected Result: Does not hold for all path conditions
Path Conditions Succeeded On: 189

Path Conditions Failed On: 176

Explanation: An Association is only created if there is a
Company in the City

'@ Neg_CountryCity

5.4.3 Facility contracts

Pos-ChildSchool

Statement: If a Child goesTo a School that has a special
Service, then a SpecialFacility has to be created that has
the Person created from the Child as members
Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 168

Path Conditions Failed On: 0

[£) Pos_childschool

.

Neg-SchoolOrdFac

Statement: An OrdinaryFacility should be created from
each School

Expected Result: Does not hold for all path conditions
Path Conditions Succeeded On: 168

Path Conditions Failed On: 60

Explanation: A School will be transformed into a Spe-
cialFacility if it provides a special Service

[Z] Neg_SchoolOrdFac

Eq School

[OrdinaryFacility

5.5 Contract expressiveness

This section will briefly discuss the expressiveness of our
contract language.

As seen from the above examples, contracts contain a pre-
condition and a post-condition which each contain a typed
graph. [41] divides the possible contracts into three types:
multiplicity invariants, syntactic invariants, and pattern con-
tracts.’

5.5.1 Multiplicity invariants

Contracts can express multiplicity invariants contained in the
source or target metamodel. As seen in Fig. 20 in Sect. 5.3.1,
the propositional logic of our contract language allow us to
specify that only one Person should be connected to a Com-
munity in the output model. This allows the user to ensure
that rules are not combining to produce more elements than
desired.

Note however, that due to the abstraction of our approach
these multiplicity invariants are not strict. As only one execu-
tion of each rule is considered in a path condition, our prover
will not generate path conditions where a rule executes mul-
tiple times. Thus, multiplicity contracts such as the one in
Fig. 20 check for the existence of transformation executions
where two Person elements are always created.

5.5.2 Syntactic invariants

Syntactic invariant contracts check whether the path condi-
tion is well-formed with respect to the input or output syntax.
An example of this type of contract is shown in Fig. 21 for
the UML-to-Kiltera case study described in Sect. 6.1.3. The
informal statement for this contract is ‘if there is an Inst ele-
ment, then that Inst element has the same name as a ProcDef
element.’

3 We here exclude rule reachability contracts, as the prover now auto-
matically reports the failure of a rule to execute.

@ Springer

B.J. Oakes et al.

SS1_then

Fig. 21 An example of a syntactic invariant contract

5.5.3 Pattern contracts

The final category of contracts described by [41] are pattern
contracts, which relate elements in the input model to ele-
ments in the output model. The nine contracts presented in
Sect. 5.4 for the extended Families-to-Persons transforma-
tion are of this type. The intention of these contracts is to
allow the user to verify that multiple rules are interacting in
a valid way, which is difficult from manual inspection of the
rules themselves.

5.5.4 Limitations

We note that our contract language allows for the definition
of a wide variety of structural conditions. Comparisons can
be drawn to [26], where the authors use PaMoMo as the basis
for their contract language. This allows the authors to define
a variety of visual contracts to express both negative and
positive contracts.

However, our contract language is currently limited as
it can only represent structural conditions and not arbitrary
expressions. This renders the contract language much less
powerful than other constraint languages such as OCL. For
example, the current implementation of our contract lan-
guage does not contain operators for sets, or for handling
non-String attributes. As well, as we are abstractly repre-
senting the rules that execute, and the number of times each
rule executes, users must be careful about their definition of
multiplicity constructs. Contracts also cannot be written to
validate instance data for input or output models, such as
ensuring that all input names start with a capital letter.

6 Experimental results
In this section we present an evaluation of our higher-order

transformation and contract-proving technique. In particular,
we are interested in the following research questions:

@ Springer

— RQI: Is our technique applicable to complex ATL trans-
formations?

— RQ2: How does the time and memory usage of the con-
tract prover differ for each of our case studies?

— RQ3: Given a particular contract, can we reduce the time
taken for contract-proving through transformation slic-
ing?

— RQ4: Does the version of the transformation produced by
our higher-order transformation differ significantly from
a hand-built transformation?

Note that RQ1 and RQ?2 are discussed directly in this sec-
tion, while RQ3 is examined in Sect. 7 and RQ4 in Sect. 8.

6.1 Study setup

This section will describe the case studies used to answer our
research questions.

6.1.1 Families-to-Person transformations

One of our experiments for this work was the Families-
to-Persons transformation described in [35]. We retain this
transformation for our experiments, as it contains a num-
ber of interesting concepts with regards to our verification
work. In particular, the rules producing elements in the output
model are non-trivial, as those elements have their attributes
set through manipulation of the attributes in the input model.
This case study tests our technique’s ability to correctly trans-
form these attribute-setting rules and then prove contracts on
these transformations.

As well, this case study is technically challenging to prove
contracts on, as multiple rules in the transformation contain
duplicate elements, such as the Family element. As described
in Sect. 5.3, our contract prover must be able to correctly
perform non-isomorphic matching of the contract onto a path
condition. That is, if there are similar elements in two rules in
the path condition, the contract prover must resolve whether
these elements match over separate elements in the input
model, or over the same element.

We also performed experiments on the extended Families-
to-Persons transformation described in Sect. 3. This exten-
sion expands the number of ATL rules from five in the original
transformation to ten in the extended version, which increases
the number of DSLTrans rules produced from 9 to 19. Con-
sequently, the number of path conditions produced by our
prover grows from 101 to 366.

The purpose of experimenting on this transformation is
therefore to examine the performance of our property prover
on a larger transformation example which contains more
complex rules and contracts. Note that the contracts proved
on this transformation have been created by an author of this
paper and do not come from past work.

Full contract verification for ATL using symbolic execution

Table 2 Size of transformation metamodels

Transformation Metamodel Num. elements Num. assoc. Num. attrib. Num. inher. relations
Families-to-Person Input 3 5 2 0

Output 3 1 2 2
Ext. Families-to-Person Input 11 21 3 7

Output 12 8 2 9
GM-to-AUTOSAR Input 6 10 5 0

Output 13 8 2 3
UML-to-Kiltera Input 42 51 6 41

Output 30 41 9 20

6.1.2 GM-to-AUTOSAR transformation

Another transformation we examine as a case study is an
industrial transformation seen in our earlier contract-proving
work [43]. The transformation in question takes as input mod-
els defined in a proprietary legacy metamodel used at General
Motors (GM) for Vehicle Control Software development.
The output metamodel is the automotive industry-standard
AUTOSAR.# Therefore, this transformation is used for
model evolution purposes, migrating the models to the new
standard for greater interoperability with tools.

Our intention with this case study is twofold. First, we are
interested in comparing the time and memory consumption
of this industrial example to the other transformations.

Secondly, we will compare the DSLTrans transforma-
tion produced by our higher-order transformation, and the
hand-built transformation built for that earlier work. These
results will be discussed in the context of RQ4 for whether
the DSLTrans representation generated by the higher-order
transformation is sufficiently efficient for contract verifica-
tion to replace the hand-built version. This will be discussed
in Sect. 8.1, along with a brief comparison of the two
DSLTrans transformations.

Note that [41] further discusses the GM-to-AUTOSAR
case study, including a detailed description of the transfor-
mation and the contracts to be proved.

6.1.3 UML-to-Kiltera transformation

For our final case study, we have selected a transformation for
transforming a subset of UML-RT state machine diagrams
into Kiltera, which is a ‘language for timed, event-driven,
mobile and distributed simulation’. The transformation was
proposed in [38] and developed in [36]. Previously, we
have studied this transformation to obtain insights into the
contract-proving process [42].

4 AUTomotive Open System ARchitecture, www.AUTOSAR.org/.

We include this case study for reasons similar to the GM-
to-AUTOSAR transformation. As the transformation rules
in the UML-to-Kiltera contain a large number of elements,
especially duplicated elements, we are interested in the per-
formance penalty to the matching and rewriting steps during
the contract-proving process. One contract in particular is
quite troublesome for our matching process, as described in
Sect. 7.2.

As well, we are interested in the differences between
the hand-built transformation built for [42], and the ver-
sion produced by our higher-order transformation (HOT).
In particular, a number of improvements were made to the
higher-order transformation to correctly generate the cor-
rect DSLTrans transformation for this case study, increasing
the applicability of our approach in verifying ATL trans-
formations. Further details on the comparison between the
hand-built and HOT-produced transformation versions are in
Sect. 8.2.

Further details on this case study are presented in [41],
including both metamodels, all contracts, and both ATL and
DSLTrans transformations. Note that a number of contracts
have been omitted from the current work due to some func-
tional equivalences.

6.2 Case study summary

This section briefly presents two tables which compare the
case studies in terms of their ATL rule composition, as well
as certain metrics for their input and output metamodels. This
summary is presented to support our claim that our technique
is applicable to a variety of ATL transformations. Please note
that the metamodels and ATL/DSLTrans transformations for
each case study are available on our website [3].

Metrics for the size and complexity of the input and output
metamodels for each transformation are presented in Table 2.
These metrics include the number of elements, associations,
and inheritance relationships present in each metamodel.

Table 3 presents the number of matched rules, lazy rules,
and helpers in the ATL transformation for each of our case
studies.

@ Springer

B.J. Oakes et al.

Table 3 Number and classification of rules in each ATL specification

Transformation Num. matched Num. lazy Num. helpers

Families-to-Person 5 0 0
Ext. Families-to-Person 8 2 0
GM-to-AUTOSAR 3 0
UML-to-Kiltera 7 13 3

6.3 Measures

To objectively answer our defined research questions, con-
tract prover experiments were conducted for all case studies
mentioned above. For each case study, the success of our
contract prover rests on whether the contracts we have
indicated hold or do not hold on all path conditions (as
appropriate).

The following information was collected during the
contract-proving process for each case study:

— Number of rules in each transformation

— Number of path conditions produced by the contract
prover

Time required in order to generate all path conditions
Number of contracts to be proved on the case study

— Time required to prove the contracts

— Maximum memory usage required by the contract prover

Note that the number of rules found in the ATL transfor-
mation may be different from the DSLTrans transformation
produced by the higher-order transformation. Therefore, both
counts are reported.

The experiments were run on a 2013 Macbook Air with
an Intel Core 15-4250U and 8 GB of RAM, running on Arch
Linux and Python 3.5.1. Both the path condition construction
and contract-proving processes were parallelized among four
threads. Each experiment was conducted at least five times,
with results averaged. Timing information was obtained by
using the Python timing package time. Memory information
was obtained using the /usr/bin/time command. Note
that the memory usage information will also record the space
overhead required by the Python interpreter.

All the artifacts used for our experiments can be found on
our website [3].

6.4 Results

Table 4 shows the performance results for proving contracts
on our case studies. We shall now discuss these results in
the context of the first two research questions. RQ3 and RQ4
will be discussed separately in Sects. 7 and 8.

@ Springer

6.4.1 RQ1: Applicability of the technique

To answer our first research question ‘Is our technique
applicable to complex ATL transformations?’, we have tested
our contract prover on a number of transformations of vary-
ing sizes sourced from different application domains. Metrics
for the case studies are presented in Sect. 6.2.

For each case study, contracts we expected to hold were
successfully proved on all applicable path conditions. For
other contracts, which do not hold in all cases, counter-
examples were produced that indicate the exact combination
of rules where the contract is not guaranteed to hold. These
counter-examples were then manually examined to ensure
their correctness.

For example, we attempted to prove the DaughterMother
contract on the extended Families-to-Person transformation,
as detailed in Sect. 5.3. Our contract prover correctly indi-
cated that for input models that only contain daughter and
mother elements, it is not guaranteed that there is a Man ele-
ment in the output model. As this was an expected result, this
raises our confidence in the correctness of the transformation.

Success of our contract prover on these case studies lets us
conclude that we can apply our technique to a variety of com-
plex ATL transformations with varying rule and metamodel
sizes.

6.4.2 RQ2: Time and memory characteristics

To answer our second research question, ‘How does the time
and memory usage of the contract prover differ for each of
our case studies?’, we refer to the results in Table 4 which
contains the performance results of our experiments.

Note that while the number of path conditions generated
is certainly dependent on the number of DSLTrans rules in
the transformation, there is not a linear formula that can be
applied. As an example, the extended Families-to-Persons
transformation produced three times more path conditions
than the original Families-to-Persons transformation, even
though the extended version has roughly twice the number
of rules.

The exact number of path conditions produced will depend
on the complexities of how rules can combine with each other,
such as the number of dependencies between rules or even
the number of elements in each rule. As well, since our path
condition generation is implemented using graph-matching
and rewriting, larger rules will also take longer to combine,
increasing the time taken for path condition generation [31].

The time to prove contracts on each transformation is also
dependent on a number of factors. Similar to path condition
generation, the time taken for contract proving is roughly
proportional to the number of path conditions generated for
a transformation, the number of contracts to be proved on

Full contract verification for ATL using symbolic execution

Table 4 Performance results

ATL/DSLTrans Path conds. Time (s) Contracts Time (s) Memory (MB)
rules generated proved
Families-to-Person 5/9 101 0.24 4 0.52 54
Extended Families-to-Person 10/19 366 3.89 10 7.35 59
GM-to-AUTOSAR (hand-built) 5/9 13 0.18 0.15 58
GM-to-AUTOSAR (HOT) 5/9 10 0.26 0.15 60
UML-to-Kiltera 20/17 322 1.86 15 11.99 55

that transformation, and the composition of path conditions
and contracts.

Note that our contract-proving times are different (and
may indeed be worse) than those reported in [35] or ear-
lier works. This is primarily due to the replacement of the
core matching algorithm in the prover. Recall that match-
ing of contracts onto path conditions is non-isomorphic, as
discussed in Sect. 5.3. Previously our prover had a ‘disam-
biguation’ step to explicitly produce all possible overlapping
of rules, which could then be matched with a standard iso-
morphic matcher. A new matching algorithm was designed
to bypass this step and take these overlapping elements into
account. This algorithmic improvement also has the side-
effect of tending to produce more path conditions compared
to our earlier works.

We note that this new matching algorithm has not been the
subject of heavy optimization, and we expect further speed
improvements in the future. In particular, we note that one
contract in particular for the UML-to-Kiltera case study has
terrible matching performance, taking 142 seconds to prove.
This is solely due to our unoptimized matching algorithm.
In particular, the contract contains a New element connected
to four Name elements. As well, this structure is repeated a
number of times in the transformation’s path conditions. As
our matching algorithm is currently based on an association-
based approach, a combinational explosion occurs when the
matcher attempts to return all possible matches. We con-
sider this contract to be an edge case, and its proving time
is not included in Table 4 as it is solely an artifact of our
unoptimized matching algorithm. Future work will attempt
to address this implementation issue.

The memory usage of our contract prover is dependent
upon the number of DSLTrans rules in the transformation,
and on the number of path conditions that are created. Note
that for the transformations used here as case studies, the
prover memory usage is between 54 to 60 MB, which is
less than 10 MB higher than the overhead to run the Python
scripts.

Overall, our contract-proving approach stays within a
modest time and memory budget. All transformations have
their path conditions generated and have their contracts
proved within 15 seconds and 60 MB of memory. Indeed,

even the edge case contract has a reasonable proving time of
142 seconds. Future work will pursue optimizations to our
technique in order to prove contracts on even larger and more
complex ATL and DSLTrans transformations.

7 Slicing transformations

This section will expand on the slicing algorithm introduced
in [35]. Contrary to the earlier work, this algorithm has now
been made an automatic part of the contract prover.

The intention of this algorithm is to create the minimal set
of transformation rules for a given contract, such that when
this set is symbolically executed by the contract prover, the
correct result is produced. Decreasing the number of rules
that need to be symbolically executed allows for a signifi-
cant decrease in the amount of time required for the proving
process.

Thus, this slicer algorithm is our attempt to answer RQ3:
‘Given a particular contract, can we reduce the time taken
for contract proving through transformation slicing?’

7.1 Slicer overview

There are three steps in our technique to slice the transfor-
mation for a contract.

The first step is to decompose the contract into its typed
elements and associations. This information allows the slic-
ing algorithm to determine which rules are required to be
involved in the contract-proving process.

The second step examines all rules in the transformation,
and identifies those rules which contain the necessary ele-
ments for the contract to match over.

Finally, the third step determines whether those rules
selected in the second step require elements that are produced
by earlier rules. This must be an iterative process to allow all
required rules to execute. Note that this dependency analysis
is currently performed very conservatively, and future work
will attempt to optimize the process to eliminate more rules.

All those rules not required for the contract are then
removed from the transformation to be verified. Note that
this new transformation may be smaller than the original,

@ Springer

B.J. Oakes et al.

but this depends on the specific dependencies between the
contract and the transformation rules.

7.1.1 Decomposing contract and rules

To support the slicing algorithm, it is necessary to determine
which rules the contract (and other rules) require for exe-
cution. This is determined by ‘decomposing’ the underlying
typed graph structure to determine precisely which elements
it matches over. In the current implementation, the back-
ward links and associations between elements in the graph
are extracted, as well as any elements which are not con-
nected to others, termed isolated elements.

For example, consider the contract in Fig. 22. There are
two associations in the pre-condition, where each is com-
posed of a Member element connected to a Family element.
One association is typed by daughters, while the other is
typed by mothers. As well, there is the backward link which
connects an element in the pre-condition with an element in
the post-condition, enforcing that a Man element has been
created by the same rule that matched the Family element.

The second step to the slicing algorithm is to examine all
the rules in the transformation. Recall that the path conditions
which the contract matches over have been created by com-
bining rules (cf. Sect. 5.2). Therefore, for the associations in
the contract to appear in the path condition, one of the rules
which contain this association must have been symbolically
executed.

Each rule is examined to determine whether there are iso-
morphic copies of the contract associations, backward links,
or isolated elements present in the rule. If so, then that rule
may produce the required association or element, so the rule
is marked as crucial to the proving of the contract.

As a clarification for backward links, recall that as back-
ward links must match over traceability links, where an input
element produces an output element as part of the same rule.

[£] Neg_DaughterMother

[25, Family [25, Member

Fig. 22 Example contract for the slicing process

@ Springer

Therefore, this step succeeds when both elements connected
by the backward link are found in the rule, despite no explicit
traceability link between them.

This collection step is very conservative, as it includes
all rules which contain any of the contract associations or
isolated elements. However, it is correct to reason about the
contract as a collection of associations and isolated elements
rather than a complete graph. Recall that in Sect. 5.3, the con-
tract is not matched isomorphically onto the path condition,
due to the path condition structure representing the execu-
tion of a set of transformation rules. Therefore, the elements
required for the contract may be ‘split’ among many rules in
the transformation, necessitating a decomposition approach.

Note that if any association, backward link, or isolated
element in the contract cannot be found in the full set of
transformation rules, then the contract cannot match on any
path condition produced by the proving algorithm. This indi-
cates that either the contract or transformation contains errors
and must be fixed.

The final step is to reason about the rules marked as
crucial for contract proving in the second step. The decom-
position and searching steps described above are repeated
for each rule. This produces an extremely conservative rule-
dependency graph, which indicates the rules that must be
present in the transformation for this contract to be correctly
proven.

7.2 Results and discussion

To measure the impact of the slicing algorithm on contract
proving, we examined the effects of slicing the UML-to-
Kiltera transformation. A number of contracts were proven
on both the whole transformation (denoted as the ’original’
version) as well as the subset of the transformation returned
by the slicing algorithm (the ’sliced’ version). Note that the
time taken to perform slicing itself was less than 0.05 seconds
for all contracts.

The results in Table 5 show the reduction in contract-
proving time when slicing is performed. The original UML-
to-Kiltera transformation, which originally contained 17
DSLTrans rules, has been sliced into subsets ranging from
2 to 15 rules for each contract. Note that the sliced transfor-
mations produce at most half the number of path conditions
as the original transformation, greatly lowering both path
condition construction time and contract-proving time. Fur-
thermore, the results of contract proof were identical for both
the normal and sliced versions.

However, the number of rules in the slice depends on the
particular elements involved in the contract and the rules. For
example, slicing the transformation for the MM6 contract
produced a DSLTrans transformation with 2 rules, while a
slicing for the SS/ contract produced a transformation with
15 rules.

Full contract verification for ATL using symbolic execution

Table 5 Effect of slicing on

contract-proving time for the Name Version Rules PCs PC build time (s) Prove time (s)

UML-to-Kiltera transformation PP1 Original 17 322 1.64 6.77
Sliced 14 161 0.93 3.26

PP2 Original 17 322 1.80 6.63
Sliced 14 161 0.94 3.15

PP3 Original 17 322 1.75 141.15
Sliced 14 161 0.89 139.41

PP4 Original 17 322 1.85 7.02
Sliced 14 161 1.01 342

MM1 Original 17 322 1.47 5.29
Sliced 2 3 0.05 0.09

MM2 Original 17 322 1.68 7.01
Sliced 8 64 0.13 0.12

MM3 Original 17 322 1.87 7.06
Sliced 11 64 0.55 0.62

MM4 Original 17 322 1.84 7.00
Sliced 11 64 0.58 0.64

MM5 Original 17 322 1.84 7.00
Sliced 12 99 0.76 1.18

MM6 Original 17 322 1.71 6.33
Sliced 2 3 0.04 0.08

MM7 Original 17 322 1.55 5.65
Sliced 8 7 0.13 0.11

MM8 Original 17 322 1.84 6.84
Sliced 12 99 0.74 1.14

MM9 Original 17 322 1.81 7.03
Sliced 12 99 0.77 1.13

MM10 Original 17 322 1.47 5.29
Sliced 11 64 0.59 0.67

MMI11 Original 17 322 1.55 5.81
Sliced 12 115 0.77 1.97

SS1 Original 17 322 1.57 5.89
Sliced 15 112 0.28 0.74

As described in Sect. 6.4.2, the proving time for the PP3
contract is a significant outlier from the rest of the contracts,
even when the transformation is sliced. As mentioned, we
consider this to be an artifact of our unoptimized matching
algorithm.

These results show that the slicing of transformations
based on the contract to be proven can have a large impact
on the proving time. Path condition construction time was
reduced by 43 to 97 percent, while contract-proving time was
reduced by 51 to 98 percent (excluding PP3). This answers
our research question in the affirmative.

As well, contrary to our earlier work in [35], this slicing
can now also be performed automatically during contract
proving. Note that the current implementation of the slicer is
based on a relatively simple decomposition of contract and

rule graphs, along with construction of a conservative rule-
dependency graph. Future work will ensure that the minimum
number of rules are selected in the sliced transformation.
We note that our slicing technique has definite parallels
to other transformation verification works. For instance, [12]
quantitatively compares the elements in ‘Tracts’ (an anal-
ogous version of our contracts’) to transformation rules to
suggest to the user which rules are causing the Tract to fail.
However, their approach differs from ours in two fundamen-
tal ways. First, the approach of [12] focuses on guiding the
user toward the problematic rules.® Our slicing approach is
a performance optimization to reduce the number of path

5 Related work concerning Tracts is discussed in more detail in Sect. 9.

6 Note that this guidance is partially addressed in our work. When path
conditions fail a contract, we report the path condition which represents

@ Springer

B.J. Oakes et al.

conditions that must be created. Second, our sliced transfor-
mation must contain all rules that could change the result of
a contract holding or not holding on a transformation. We
cannot afford a false result in our verification as is allowed
in [12], and thus our set of rules must be conservatively built.

8 Hand-built versus HOT-produced
transformations

This section will investigate our last research question RQ4,
‘Does the version of the transformation produced by our
higher-order transformation differ significantly from a hand-
built transformation?” The case studies of interest are the
GM-t0-AUTOSAR and UML-to-Kiltera transformations. As
the DSLTrans transformations are generated directly from
ATL transformations, it is illuminating to directly com-
pare these produced transformations to hand-built versions
created by our academic partners in earlier work. In par-
ticular, we are interested in the performance penalty due to
non-optimized transformations. If the penalty is minor or
non-existent, then the HOT can serve as an automatic replace-
ment to building the transformation by hand.

8.1 GM-to-AUTOSAR transformation

As discussed in Sect. 6.1.2, this transformation migrates
models from a proprietary General Motors metamodel to an
industry-standard metamodel [43].

8.1.1 Transformation shape

For brevity, the hand-built and HOT-produced versions of the
transformation will not be presented as figures. Instead, the
transformations are summarized in Tables 6 and 7 by listing
the number of match and apply elements in each rule. The
full transformations can be found on our website [3].

Note that both the hand-built and HOT-produced ver-
sions of the transformation have nine rules, and the number
of match and apply elements produced are approximately
equivalent. This indicates that the HOT is producing a trans-
formation that is roughly similar in complexity to what a
human would build. Note however that the HOT currently
produces a transformation which contains one rule per layer.

8.1.2 Effect on contract proving

Our research question asks whether the HOT-produced
transformation is sufficient to replace the hand-built trans-

Footnote 6 continued
the minimum number of rules. Therefore, it is the interaction of these
rules that cause the contract to fail.

@ Springer

Table 6 GM-to-AUTOSAR (hand-built) transformation structure

Layer Rule name Match Apply
elements elements

1 MapPN2FiveElements 1 5
Map Module 3 2
MapPartition 2 1

2 ConnECU2VirtDev1 2 2

3 ConnVirtDev2Distrib1 3 2

4 ConnVirtDev2Distrib2 2 2

5 ConnECU2VirtDev?2 2 2

6 ConnPPortProto 5 2
ConnRPortProto 5 2

Total 9 25 20

Table 7 GM-to-AUTOSAR (HOT) transformation structure

Layer Rule name Match Apply
elements elements
1 createComponent 1 2
2 initSysTemp 3 6
3 initSwc2EcuMap 3 1
4 sysMapping 2 2
5 compostype 3 2
6 mappingcomponent 2 2
7 mappingECUinstance 2 2
8 pportprototype 5 2
9 rportprototype 5 2
Total 9 26 21

formation when contract proving. The following results in
Table 8 show the comparison between proving each con-
tract on the two versions of the transformation. Note that 13
path conditions were generated for the hand-built GM-to-
AUTOSAR transformation, while 10 path conditions were
generated for the HOT-produced version.

We note that all contracts are proved in an almost equiva-
lent amount of time, and have comparable results between the
two versions of the transformation. The contract failures for
M1 and M3 are expected, as the original ATL transformation
contained errors [41].

8.2 UML-to-Kiltera transformation

As mentioned in Sect. 6.1.3, the UML-to-Kiltera transfor-
mation transforms UML-RT state machine diagrams into the
Kiltera language for the purposes of verification and simula-
tion. It is discussed in more depth in [36,41].

The authors happily note that the exact same rules were
produced by the higher-order transformation from the ATL
transformation code. In fact, all elements and names were

Full contract verification for ATL using symbolic execution

Table 8 GM-to-AUTOSAR version effect on contract proving

Name Version PCs succ. PCs fail. Prove time (s)
Ml Hand-built 4 8 0.06
HOT 4 4 0.05
M2 Hand-built 12 0 0.05
HOT 8 0 0.05
M3 Hand-built 4 4 0.05
HOT 4 4 0.05
M4 Hand-built 8 0 0.06
HOT 8 0 0.05
M5 Hand-built 12 0 0.06
HOT 8 0 0.05
M6 Hand-built 12 0 0.06
HoOT 8 0 0.05
P1 Hand-built 6 0 0.07
HOT 4 0 0.05
P2 Hand-built 6 0 0.07
HOT 4 0 0.07
S1 Hand-built 4 0 0.06
HOT 4 0 0.08

consistent between the versions, allowing us to declare the
hand-built and HOT-produced transformations functionally
identical.

Contrary to our other case studies, it is also interesting to
note that the DSLTrans version of the UML-to-Kiltera trans-
formation contains only 17 rules compared to the 20 rules
in the ATL version. This difference is due to the ATL ver-
sion containing six trivial lazy rules which perform attribute
setting.

8.3 Conclusion

The results for both experiments indicate that the produced
DSLTrans transformations are of equivalent quality to the
hand-built versions. There is a small to non-existent perfor-
mance penalty in one case, and in the other the rules produced
were identical to the hand-built version. Thus, we believe that
it is sufficient to use our higher-order transformation as part
of a tool-chain to verify ATL transformations.

9 Related work

There has been already an extensive work on verifying dif-
ferent aspects of model transformations, e.g., cf. [5,39] for
surveys in this domain. With respect to the contribution of this
paper, we summarize previous contributions for checking dif-
ferent kind of contracts for model transformations whereas
the concrete approaches range from testing to verification
approaches.

9.1 Model transformation testing

In [24,48] the authors describe their method where ‘Tracts’
can be specified for model transformations. These tracts
define a set of constraints on the source and target meta-
models, a set of source-target constraints, and a tract test
suite, i.e., a collection of source models satisfying the source
constraints. The accompanying TractsTool can then automat-
ically transform the source models into the target metamodel,
and subsequently verify that the source/target model pairs
satisfy the constraints. The advantages of this are that the
approach is not computationally intensive, as tests can be
narrowly focused in a modular way.

Besides the Tracts approach, there are several other
approaches supporting the testing of model transformations
based on different kind of contracts such as model frag-
ments [34], graph patterns [8,26], Triple Graph Grammars
(TGGs) [49], dedicated testing languages [21,28], or as used
in Tracts OCL constraints [16], and even a combination
of these mentioned approaches [22]. While these men-
tioned approaches resort to black-box-based testing, there
are also approaches which allow for white-box-based testing
of model transformations such as [25].

In contrast to testing approaches, the presented approach
in this paper allows for contracts to be proved for all possible
transformation executions, i.e., for all possible input models.
However, we also keep the same implication idea: the pre-
condition of a property sets constraints on the input models
of the transformation, and then, the post-condition defines
constraints on the output model.

9.2 Model transformation verification

Previous work also proposed the idea of transforming ATL to
formal domains. The work of [47] describes a formal seman-
tics for ATL, such that ATL transformations can be expressed
in the formal language Maude. Once expressed in Maude,
properties can then be verified over the execution of this
transformation, such as reachability of particular states, or
that no more than one rule is matched on each source ele-
ment. In our work, we transform the ATL transformation into
the DSLTrans transformation language to prove transforma-
tion contracts which is not in the scope of [47].

The work in [14] automatically transforms transforma-
tions in a number of transformation languages (such as ATL)
to OCL. As well, similar to our system, the invariant, pre- and
post-conditions are described in a graph format. However, in
[14] the counter-example conditions for each property are
generated. Then a model finder generates a possible counter-
example model, before the system determines whether the
model can be satisfied or not. Note that due to incomplete
searching of the model space, the model finder may not find
every counter-example. In contrast, our system works by

@ Springer

B.J. Oakes et al.

matching the property onto path conditions, which abstracts
all possible transformation executions. Thus, our property
prover can give a stronger proof.

In [23] the authors are checking different kinds of model
transformation properties based on OCL and the usage of
KodKod which requires again concrete bounds for property
proving. The work by Anastasakis et al. [6] transforms QVT
model transformations to Alloy in order to verify whether
given assertions, i.e., properties, hold for the given trans-
formations. If no target model is found by Alloy for a
given source model, the assertion does not hold. As Alloy
needs bounds for the model search, models outside the given
bounds are not found. Similar model transformation verifi-
cation support based on Alloy is presented in [20] which also
needs concrete bounds for performing the model search.

Besides the mentioned bounded verification approaches,
there are some unbounded approaches using theorem provers
for verifying model transformations. For instance, Calegari
et al. [15] propose an interactive approach to verify contracts
for ATL transformations based on the Coq proof assistant.
This approach is unbounded, but requires some user guid-
ance. Another approach using the Coq proof assistant to
ensure the correctness of model transformations is presented
in [37]. However, the authors aim to synthesize transforma-
tion implementations from specifications which are correct
by construction instead of verifying independently developed
transformations.

Other approaches using theorem provers for model trans-
formation verification go one step further by using modern
SMT solvers such as is done in [13,17]. These approaches
do not require user guidance as it was required in the afore-
mentioned Coq- based approaches. They translate the ATL
transformations as well as the contracts expressed in OCL
into first-order logic expressions and use Z3 for perform-
ing the theorem proving. Compared to our approach, these
approaches are in the same spirit, but they consider a smaller
subset of ATL compared to our solution. For instance, cur-
rently they do not support lazy rules.

Another work which translates ATL transformations for
analysis purposes is presented in [40]. The authors argue
that an algebraic graph transformation representation would
allow for enhanced verification tasks. However, the authors
do not go into detail on this aspect as they mainly focus on
the correct translation of ATL language concepts to Henshin
concepts. Thus, they consider the exploration of concrete
verification tasks as future work.

In [29], the authors present a generic transformation meta-
model which can be used as an intermediate language for
translating model transformation languages to this repre-
sentation, before the transformations are transformed into a
formal domain for performing analysis. The authors present
several verification cases where the proposed framework
helps in exploiting different verification formalisms and tech-

@ Springer

niques. In our approach, we also aim for reusing an existing
verification formalism provided by DSLTrans and show how
aconsiderable subset of ATL can be translated into DSLTrans
to perform contract verification.

9.3 Synopsis

To the best of our knowledge, in this paper we have pre-
sented the only approach to fully prove properties defined as
contracts for model transformations expressed in declarative
ATL including advanced features such as lazy rules.

10 Conclusion

This section will offer a brief discussion as to threats of
validity, as well as a number of concluding thoughts on our
contract prover and technique.

10.1 Threats to validity

This subsection discusses the major threats to the validity to
our work.

The higher-order transformation has not been formally
verified. Thus, we cannot be completely sure that the
DSLTrans transformations that are automatically produced
are directly equivalent to the original ATL transformation.
However, two arguments can be made for the HOT’s cor-
rectness. The first is that the HOT is relatively simple, as
explained in Sect. 4. It consists of two steps: first creating
the rules that generate the output elements and then creating
the rules that generate the relations between output elements.
This two-step approach makes ATL’s semantics explicit and
makes the DSLTrans transformations generated by the HOT
easily understandable as well as traceable back to their orig-
inal ATL specifications.

Second, we have compared the contract proof results
between two transformations created by hand and the cor-
responding transformations generated by our higher-order
transformation in Sect. 8. We note that one transformation
produced by our HOT was exactly the same (modulo minor
rule rearrangement) as the hand-built version. As well, the
other transformation was verified with similar proving time
compared to the hand-built version. For future work, we are
interested in verifying the higher-order transformation itself
using the contract prover we present here.

Scalability is always an issue when exhaustive approaches
such as ours are proposed. We have shown with our exper-
iments that the HOT and the contract prover can transform
and verify reasonably sized and complex transformations.
As well, the slicing algorithm presented is able to reduce the
verification time significantly for a complex transformation.
However, more experiments with large transformations and
contracts involving many elements are necessary to confirm

Full contract verification for ATL using symbolic execution

our positive results on the usability and scalability of our
technique.

As DSLTrans is a Turing-incomplete computing language,
it has limited expressiveness. This means that ATL trans-
formations that use the refining mode for realizing in-place
transformations or imperative constructs cannot in general
be translated into DSLTrans to be verified by our approach.
However, our technique can be used to verify the declarative
subset of ATL in out-place transformations using the default
mode, which is used in many more transformations than the
refining mode. We are thus confident our technique is usable
for a large class of real-world problems.

Finally, only the String type is available in SyVOLT: this
limitation implies that proofs in SyVOLT can only be built
for model transformations that manipulate attributes of types
String. Note that this is not a limitation of the SyVOLT prover
itself, but rather of the expressiveness of the DSLTrans lan-
guage. This limitation can be surmounted in various ways,
perhaps by converting non-String attributes and operations
into Strings before transformation and doing the reverse oper-
ation after the transformation is concluded.

10.2 Conclusion

In this paper, we have expanded on our novel technique from
[35] to fully verify pre-/post-condition contracts on declara-
tive ATL transformations. This approach is centered around
transforming ATL transformations into DSLTrans, our trans-
formation language with reduced-expressiveness. Our path
condition generator is then able to produce a set of path condi-
tions, which represent all possible transformation executions.
Contracts are proved to either hold or not hold on each path
condition and thus on all transformation executions.

This paper has also presented a number of case studies
designed to answer our four research questions. Results indi-
cate that our contract prover is applicable to reasonably sized
and complicated ATL transformations, and that contracts can
be proved using a feasible amount of time and memory. As
well, we have also further detailed our ‘slicing’ technique,
which selects only the rules which are needed to prove a
particular contract. This results in a significant decrease in
contract-proving time. Finally, we determined that our HOT
produces transformations that are a suitable replacement for
hand-built transformations in contract proving.

10.3 Future work

Our future work will attempt to address any limitations of
this work. In particular, we aim to produce a tool that can
be used off-the-shelf to prove properties about a class of
existing ATL transformations, fully automatically, by using
the DSLTrans language as a hidden back-end. Our current

focus is on integrating our higher-order transformation into
our SyVOLT tool [45].

Another ongoing concern of ours is the time and space
requirements to prove contracts on large transformations. We
are investigating implementation speedups, such as further
optimization of our matching algorithm and refinement of
the transformation slicer.

Acknowledgments The authors warmly thank Gehan Selim and Cl4u-
dio Gomes for their contributions to the implementation of the contract
prover. Bentley James Oakes is funded by an NSERC grant, as well as
support from the NECSIS project, funded by Automotive Partnership,
Canada. The work of Javier Troya is funded by the European Commis-
sion (FEDER) and the Spanish and the Andalusian R&D&I programmes
under grants and projects BELI (TIN2015-70560-R), THEOS (P10-
TIC-5906), and COPAS (P12-TIC-1867). Finally, the work of Manuel
Wimmer is funded by the Christian Doppler Forschungsgesellschaft
and the BMWFW, Austria.

References

1. A Short Introduction to SyVOLT. https://www.youtube.com/
watch?v=8PrR5RhPptY

2. ATL Zoo. http://www.eclipse.org/atl/atl Transformations

3. ATL2DSLTrans Artifacts. http://msdl.cs.mcgill.ca/people/levi/
filessy MODELS2015_SoSyM

4. Atlas Transformation Language (ATL). http://eclipse.org/atl

5. Amrani, M., Licio, L., Selim, G.M.K., Combemale, B., Dingel,
J., Vangheluwe, H., Traon, Y.L., Cordy, J.R.: A tridimensional
approach for studying the formal verification of model transfor-
mations. In: Proceedings of ICSTW, pp. 921-928 (2012). doi:10.
1109/ICST.2012.197

6. Anastasakis, K., Bordbar, B., Kiister, J.M.: Analysis of model trans-
formations via alloy. In: Proceedings of MoDeVVa, pp. 47-56
(2007)

7. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From core OCL
invariants to nested graph constraints. In: Proceedings of ICGT,
8571, pp. 97-112 (2014). doi:10.1007/978-3-319-09108-2_7

8. Balogh, A., et al.: Workflow-driven tool integration using model
transformations. In: Graph Transformations and Model-Driven
Engineering, pp. 224-248 (2010)

9. Barroca, B., Liucio, L., Amaral, V., Félix, R., Sousa, V.: DSLTrans:
a turing incomplete transformation language. In: Proceedings of
SLE, pp. 296-305 (2011). doi:10.1007/978-3-642-19440-5_19

10. Bergmann, G.: Translating OCL to graph patterns. In: Pro-
ceedings of MoDELS, 8767, pp. 670-686 (2014). doi:10.1007/
978-3-319-11653-2_41

11. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, San
Rafael (2012)

12. Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault
localization in model transformations. IEEE Trans. Softw. Eng.
41(5), 490-506 (2015)

13. Biittner, F., Egea, M., Cabot, J.: On verifying ATL transformations
using ’off-the-shelf” SMT solvers. In: Proceedings of MoDELS,
pp- 432448 (2012). doi:10.1007/978-3-642-33666-9_28

14. Biittner, F., Egea, M., Guerra, E., De Lara, J.: Checking model
transformation refinement. In: Proceedings of ICMT, pp. 158-173
(2013). doi:10.1007/978-3-642-38883-5_15

15. Calegari, D., Luna, C., Szasz, N., Tasistro, A.: A type-
theoretic framework for certified model transformations. In: Pro-
ceedings of SBMF, 6527, pp. 112-127 (2010). doi:10.1007/
978-3-642-19829-8_8

@ Springer

B.J. Oakes et al.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts
for the verification of model transformations. ECEASST 24, 1-15
(2009). doi:10.14279/tuj.eceasst.24.326

Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics
for ATL via translation validation. In: Proceedings of ICMT, pp.
133-148 (2015). doi:10.1007/978-3-319-21155-8_11

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N.,
Meseguer, J., Talcott, C.: All About Maude—A High-Performance
Logical Framework: How to Specify, Program and Verify Systems
in Rewriting Logic. Springer, Berlin (2007)

Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL
model transformations using static analysis and constraint solving.
In: Proceedings of ISSRE, pp. 34—44 (2014). doi:10.1109/ISSRE.
2014.10

Gammaitoni, L., Kelsen, P.: F-alloy: an alloy based model transfor-
mation language. In: Proceedings of ICMT, pp. 166-180 (2015).
doi:10.1007/978-3-319-21155-8_13

Garcia-Dominguez, A., Kolovos, D.S., Rose, L.M., Paige, R.F.,
Medina-Bulo, I.: EUnit: a unit testing framework for model man-
agement tasks. In: Proceedings of MoDELS, pp. 395-409 (2011).
doi:10.1007/978-3-642-24485-8_29

Giner, P, Pelechano, V.: Test-driven development of model trans-
formations. In: Proceedings of MoDELS, pp. 748-752 (2009).
doi:10.1007/978-3-642-04425-0_61

Gogolla, M., Hamann, L., Hilken, F.: Checking transformation
model properties with a UML and OCL model validator. In: Pro-
ceedings of VOLT, pp. 16-25 (2014)

Gogolla, M., Vallecillo, A.: Tractable model transformation test-
ing. In: Proceedings of ECMFA, pp. 221-235 (2011). doi:10.1007/
978-3-642-21470-7_16

Gonzilez, C.A., Cabot, J.: ATLTest: a white-box test generation
approach for ATL transformations. In: Proceedings of MoDELS,
pp. 449-464 (2012). doi:10.1007/978-3-642-33666-9_29
Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A.,
Retschitzegger, W., Schonbock, J., Schwinger, W.: Automated veri-
fication of model transformations based on visual contracts. Autom.
Softw. Eng. 20(1), 546 (2013). doi:10.1007/s10515-012-0102-y
Jouault, E., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model trans-
formation tool. Sci. Comput. Program. 72(1-2), 31-39 (2008)
Kolovos, D.S., Paige, R.F., Polack, FA.: Model comparison: a
foundation for model composition and model transformation test-
ing. In: Proceedings of GaMMa, pp. 13-20 (2006). doi:10.1145/
1138304.1138308

Lano, K., Clark, T., Rahimi, S.K.: A framework for model transfor-
mation verification. Formal Asp. Comput. 27(1), 193-235 (2015).
doi:10.1007/s00165-014-0313-z

Licio, L., Barroca, B., Amaral, V.: A technique for automatic vali-
dation of model transformations. In: Proceedings of MoDELS, pp.
136-150 (2010). doi:10.1007/978-3-642-16145-2_10

Lucio, L., Oakes, B., Vangheluwe, H.: A Technique for Symboli-
cally Verifying Properties of Graph-based Model Transformations.
Technical report SOCS-TR-2014.1, McGill University (2014)
Licio, L., Oakes, B.J., Gomes, C., Selim, G.M., Dingel, J., Cordy,
J.R., Vangheluwe, H.: SyVOLT: Full model transformation verifi-
cation using contracts. In: Proceedings of MoDELS 2015 Demo
and Poster Session, pp. 24-27 (2015)

Licio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim,
G., Syriani, E., Wimmer, M.: Model transformation intents and
their properties. Softw. Syst. Model., pp. 1-38 (2014). doi: 10.1007/
$10270-014-0429-x

Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation test-
ing: oracle issue. In: Proceedings of ICSTW, pp. 105-112 (2008).
doi:10.1109/icstw.2008.27

Oakes, B.J., Troya, J., Licio, L., Wimmer, M.: Fully verify-
ing transformation contracts for declarative ATL. In: Proceed-

@ Springer

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.

49.

ings of MoDELS, pp. 256-265 (2015). doi:10.1109/models.2015.
7338256

Paen, E.: Measuring Incrementally Developed Model Transforma-
tions Using Change Metrics. Master’s thesis, Queen’s University
(2012)

Poernomo, 1., Terrell, J.: Correct-by-construction model trans-
formations from partially ordered specifications in coq. In:
Proceedings of ICFEM, pp. 56-73 (2010). doi:10.1007/
978-3-642-16901-4_6

Posse, E., Dingel, J.: An executable formal semantics for UML-
RT. Softw. Syst. Model. 15(1), 179-217 (2016). doi:10.1007/
$10270-014-0399-z

Rahim, L., Whittle, J.: A survey of approaches for verifying model
transformations. Softw. Syst. Model. 14(2), 1003-1028 (2015).
doi:10.1007/s10270-013-0358-0

Richa, E., Borde, E., Pautet, L.: Translating ATL model transforma-
tions to algebraic graph transformations. In: Proceedings of ICMT,
pp. 183-198 (2015). doi:10.1007/978-3-319-21155-8_14

Selim, G.M.: Formal Verification of Graph-Based Model Transfor-
mations. Ph.D. thesis, Queen’s University (2015)

Selim, G.M., Cordy, J.R., Dingel, J., Licio, L., Oakes, B.J.: Finding
and fixing bugs in model transformations with formal verification:
an experience report. In: Proceedings of AMT, pp. 26-35 (2015)
Selim, G.M., Liicio, L., Cordy, J.R., Dingel, J., Oakes, B.J.: Spec-
ification and verification of graph-based model transformation
properties. In: Proceedings of ICGT, pp. 113-129 (2014). doi:10.
1007/978-3-319-09108-2_8

Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: a framework
for custom-built model transformation engines. Softw. Syst. Model.
14(3), 1215-1243 (2015). doi:10.1007/s10270-013-0370-4
SyVOLT tool. http://msdl.cs.mcgill.ca/people/levi/contractprover
Tisi, M., Martinez, S., Jouault, F., Cabot, J.: Refining Models with
Rule-based Model Transformations. Research report RR-7582,
INRIA (2011)

Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J.
Object Technol. 10(5), 1-29 (2011). doi:10.5381/j0t.2011.10.1.a5
Vallecillo, A., Gogolla, M., Burgueno, L., Wimmer, M., Hamann,
L.: Formal specification and testing of model transformations.
In: Formal Methods for Model-Driven Engineering, pp. 399437
(2012)

Wieber, M., Anjorin, A., Schiirr, A.: On the usage of TGGs for
automated model transformation testing. In: Proceedings of ICMT,
pp- 1-16 (2014)

Bentley James Oakes is a Ph.D.
candidate in the Modelling, Sim-
ulation, and Design Lab at
McGill University in Canada.
His Ph.D. topic is on the verifi-
cation of model transformations
in various domains using the
SyVOLT frameworks and tool.
Other research interests include
causal-block diagrams, intellec-
tual property issues in models,
and artificial intelligence. Fur-
ther information on his research
can be found at http://msdl.cs.
mcgill.ca/people/bentley/.

Full contract verification for ATL using symbolic execution

Javier Troya received his Ph.D.
degree in 2013 from the Univer-
sity of Malaga, Spain. He is cur-
rently a postdoctoral researcher
in the Department of Computer
Science and Languages at the
University of Seville, Spain. Pre-
viously, he has been a postdoc-
toral researcher in the Business
Informatics Group (BIG) at the
Vienna University of Technol-
ogy for more than two years. His
research interests include mod-
eling and metamodeling, model
transformations, non-functional
properties analysis, and metamorphic testing. For more information,
please visit http://www.lsi.us.es/~jtroya.

Levi Licio is currently a staff
researcher and Project Manager
at fortiss GmbH, Germany. He
received his Ph.D. from the Uni-
versity of Geneva, Switzerland,
in 2008. His research is about
bridging software engineering
and formal techniques. Some
of his concrete areas of inter-
est are model-driven develop-
ment, model transformation lan-
guages, the verification of model
transformations, correctness-by-
construction, models of concur-
rency (in particular Algebraic
Petri Nets), model evolution, model-based testing, and tool construc-
tion. Levi is currently developing and leading projects together with
avionic and automotive companies to produce IDEs based on frame-
works that seamlessly integrate a range of domain-specific languages.
Such frameworks aim at providing the right languages for the right
modeling tasks, while offering verification, refinement, and traceability
services. One of the main goals of such frameworks is to improve the
available means for the certification of safety-critical software by the
relevant authorities.

Manuel Wimmer is a postdoc-
toral researcher at the Business
Informatics Group of TU Wien.
His research interests include
the foundations of model engi-
neering techniques as well as
their application in domains such
as tool interoperability, legacy
modeling tool modernization,
model versioning and evolu-
tion, software reverse engineer-
ing and migration, web engineer-
ing, cloud computing, and smart
production. For further informa-
tion about his research activities,

please visit http://big.tuwien.ac.at/staff/mwimmer.

@ Springer

