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ABSTRACT
Smart Cyber-Physical Systems (sCPS) operate under dynamic, harsh
conditions and limited observability of their operation environment.
To facilitate the evaluation of distributed CPS where adaptation is
affected by partial observability, this paper contributes the formal-
ization of a wildfire tracking problem in forest areas with unmanned
aerial vehicles (UAV), as well as a customizable simulator (Wildfire-
UAVSim) that enables the evaluation of diverse adaptation strategies
both under full and partial observability conditions.
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1 INTRODUCTION
Motivated by the necessity for Cyber-Physical Systems (CPS) to
operate in challenging domains, where continual adjustments are
essential to contend with diverse sources of uncertainty, smart
CPS (sCPS) are equipped with adaptive capabilities. These systems
frequently find themselves in situations demanding pivotal deci-
sions based on information that is either incomplete or imperfect.
For example, autonomous vehicles operate in environments where
predicting the actions of other drivers is not always possible, and
smart grids must efficiently manage energy distribution despite
unpredictable fluctuations in supply and demand, often lacking
complete visibility of the network’s status.

sCPS can be of great help for addressing extreme and recurrent
problems in our society caused by the impending climate change,
such as wildfires. Due to the evident risks in tracking a wildfire by
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overflying it with piloted aircraft, counting on unmanned aerial
vehicles (UAV) able to undertake autonomous decisions is of key
importance. This is specially critical when factors such as wind and
smoke limit fire observability, which can be only partial sometimes.
A major limitation in this field is that experimentation in a real
scenario is not an option—we cannot simply set a fire to study its
behavior and test our UAV, and while feasible, emulating a wildfire
(e.g., with LED lights) and partial observability conditions in a
controlled lab environment is complex and expensive.

Therefore, we need to be able to simulate wildfire scenarios
where to test and train our UAV. Thismeans that the simulatorsmust
not only simulate the evolution of a wildfire and other conditions
such as partial observation of the environment (e.g., due to smoke),
but they also need to provide the means to include agents such as
UAV in the simulation so that they can monitor the fire evolution.

There are excellent exemplar problems and simulation artifacts
to exercise and evaluate the adaptation capabilities of sCPS [1–
3, 5, 6, 8, 11] that could in principle be used to experiment with
problems analogous to some extent to wildfire tracking with UAV.
In the area of distributed sCPS formed by unmanned air vehicles
(UAV), DartSim [8] provides a high-level simulation of a team of
UAV performing a reconnaissancemission in a hostile and unknown
environment, whereas Dragonfly [6] simulates the behaviours of
individual and collections of UAV and evaluates the satisfaction
of mission requirements both under normal and exceptional situ-
ations. Moreover, DEECo [1] is a component system (model and
runtime platform) that can be used to experiment with self-adaptive
systems where the physical distribution and mobility of nodes as
well as the limited data availability play an important role. UNDER-
SEA [2] provides simulation for unmanned underwater vehicles
(UUV) that can execute long missions with challenging conditions
such as oceanic changes and scarce opportunities for communica-
tion. Despite their usefulness, none of these artifacts is tailored to
simulate UAV in wildfire adaptation scenarios, and more generally,
to evaluate alternative adaptation strategies in situations where a
partially observable environment plays a key role in the satisfaction
of mission requirements.

Hence, in this paper we contribute with Wildfire-UAVSim, a
customizable wildfire tracking simulator. Among its many configu-
ration parameters, we can customize the forest area with different
densities of vegetation as well as fire and smoke dispersion patterns
that are affected by factors such as wind. The configuration options
of our simulator also allow to place a team of UAV in charge of
tracking the fire over the forest area. We explain how the behavior
of these UAV can be customized in our simulator to test different
adaptation strategies, providing a simple illustrative example that
moves UAV randomly over the map. The contribution of this paper
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is twofold, including both a formalization of the problem (that in-
corporates the forest area, wildfire propagation, wind, smoke, UAV
and their mission requirements), as well as the simulator.

After this introduction, Section 2 presents an overview of the
wildfire monitoring scenario together with a formalizacion of the
problem. Then, Section 3 offers an explanation of the implementa-
tion driven by the many variables that can be customized, both for
the fire simulation and for the UAV. Section 4 explains and discusses
the simulator execution. Finally, Section 5 concludes the paper and
enumerates some lines of future work.

2 ADAPTATION PROBLEM
In this section, we first provide a high-level overview of the wildfire
tracking scenario and follow with a detailed formalization of the
problem embedded into Wildfire-UAVSim.

2.1 Scenario Overview
A team of UAV is tasked with tracking the evolution of a wildfire
as it spreads over a forest area. The spread of the fire must be
tracked as accurately as possible by maximizing the amount of up-
to-date information monitored of the fire front (i.e., areas that have
already burnt or are not close to the fire yet are not relevant). Each
UAV is equipped with a downwards-facing camera that captures
information about the forest surface. UAV also have to conduct the
mission in a safe manner by minimizing the chance of collisions
among them, and are equipped with sensors that enable them to
estimate the position of other UAV. Moreover, UAV may have to
operate under challenging conditions that involve strong wind, as
well as smoke, which limits their ability to perceive the environment
(i.e., their surrounding forest area, as well as other UAV).

2.2 Problem Formalization
2.2.1 Forest Area and Wildfire Propagation. A forest area is repre-
sented as a grid 𝑆 of 𝑁 ×𝑁 cells, where each cell 𝑠 ∈ 𝑆 incorporates
two time-dependent variables that represent: (i) the amount of
burnable fuel in the cell 𝐹 : 𝑆 → N; and (ii) whether the cell is
burning (𝐵 : 𝑆 → {0, 1}). We assume a discrete notion of time, and
for simplicity, we represent the fuel value of a cell 𝑠 at time instant
𝑡 as 𝐹𝑡 (𝑠) (𝐵𝑡 (𝑠) for 𝐵, respectively).

Each cell can experience the following changes when one time
unit elapses: (a) part of its fuel is consumed (according to a burning
rate 𝛽 – cf. Expression 1) if the cell is burning, (b) when 𝐹𝑡 (𝑠) = 0,
then the fire is extinguished in that cell (𝐵𝑡+1 (𝑠) = 0), and (c) when
there is fuel remaining in a cell that is not burning (𝐹𝑡 (𝑠) > 0 ∧
𝐵𝑡 (𝑠) = 0), we define a probability 𝑝𝑡 (𝑠) (Expression 2) of the cell
getting ignited based on the proximity to other burning cells.

𝐹𝑡+1 (𝑠) =
{
𝑚𝑎𝑥 (0, 𝐹𝑡 (𝑠) − 𝛽) if 𝐵𝑡 (𝑠)
𝐹𝑡 (𝑠) otherwise

(1)

𝑝𝑡+℧ (𝑠) =
{
1−∏𝑠′∈𝑆𝐴 (𝑠,𝑑 ) (1 − 𝑑𝑖𝑠𝑡 (𝑠, 𝑠′)−2 𝐵𝑡 (𝑠′)) if 𝐹𝑡 (𝑠) > 0
0 otherwise

(2)
In Expression 2, 𝑝𝑡+1 (𝑠) depends on the state of cells adjacent

to 𝑠 , designated by the set 𝑆𝐴 (𝑠, 𝑑) = {𝑠′ ∈ 𝑆 | 𝑑𝑖𝑠𝑡 (𝑠, 𝑠′) ≤ 𝑑},
where 𝑑𝑖𝑠𝑡 : 𝑆 × 𝑆 → R≥0 is a distance function, and 𝑑 ∈ R+

(a) (b)

Figure 1: Fire spread probability for a 7 × 7 grid: (a) no wind,
(b)𝑤 = 𝑛𝑜𝑟𝑡ℎ and 𝜇 = 0.75. Darker means higher probability.

is a distance threshold. In the expression, the term 𝑑𝑖𝑠𝑡 (𝑠, 𝑠′)−2
captures an inversely proportional relation, which allows to give
more importance to the state of cells that are closer to 𝑠 . Moreover,
we define a fire spread rate parameter ℧ that controls the speed
at which fire propagates from cell to cell (i.e., ∀𝑡𝑖 , with 𝑡 ≤ 𝑡𝑖 <

𝑡 +℧ • 𝑝𝑡𝑖 = 0).

2.2.2 Wind. We model wind as a bias on each cell’s igniting proba-
bility and characterize it by its direction𝑤 ∈ {𝑛𝑜𝑟𝑡ℎ, 𝑠𝑜𝑢𝑡ℎ, 𝑒𝑎𝑠𝑡,𝑤𝑒𝑠𝑡}
and strength 𝜇 ∈ [0, 1]:

𝑝𝑡+1 (𝑠′) =
{
𝑝𝑡 (𝑠′) + 𝜇 (1 − 𝑝𝑡 (𝑠′)) if 𝑠′ ∈ 𝑆𝜇 (𝑠,𝑤, 𝑑)
𝑝𝑡 (𝑠′) − 𝜇𝑝𝑡 (𝑠′) otherwise

(3)

In Expression 3, 𝑆𝜇 (𝑠,𝑤, 𝑑) ⊆ 𝑆𝐴 (𝑠, 𝑑) is the set of cells that are in
direction𝑤 with respect to cell 𝑠 . Figure 1 illustrates wildfire spread
probabilities for a sample grid with and without wind.

2.2.3 Smoke. We characterize smoke as a function that maps each
cell to three time-dependent variables 𝜅 : 𝑆 → {0, 1} × N × N.
Hence, for each cell 𝑠 ∈ 𝑆 , we have a tuple (𝛾,𝛾𝛼 , 𝛾𝜔 ), where 𝜅𝑡 (𝑠).𝛾
indicates whether the cell contains smoke or not, 𝜅𝑡 (𝑠).𝛾𝛼 is a
counter that keeps track of the time between the instant in which a
cell ignites and smoke appears, and 𝜅𝑡 (𝑠).𝛾𝜔 is a counter that keeps
track of the time elapsed between the appearance of the smoke in
the cell, and its dissipation. To avoid situations in which smoke
dissipates before the end of the cell’s burning process, we impose
the constraint ∀𝑠 ∈ 𝑆, 𝜅𝑡𝑖 (𝑠).𝛾𝜔 ≥ ⌈𝐹𝑡𝑖 (𝑠)/𝛽⌉, where 𝑡𝑖 designates
the time instant in which cell 𝑠 ignites. Please note that we do not
consider different levels of smoke density in our model, which is
just either present in a cell or not.

2.2.4 Unmanned Aerial Vehicles (UAV). We model a UAV as a tuple
𝑢 = (𝑠, 𝐴, 𝛿𝑂 ), where 𝑠 ∈ 𝑆 is the position of the UAV in the forest
area grid, 𝐴 is the set of possible actions for the UAV, and 𝛿𝑂 ∈ N
is a distance threshold that determines the set of observable cells
in the forest area for 𝑢. The set of UAV is designated by 𝑈 , and
for simplicity, we assume that the set of actions for all UAV is the
same and consists in moving to adjacent cells in four directions, i.e.,
∀𝑢 ∈ 𝑈 • 𝑢.𝐴 = {𝑛𝑜𝑟𝑡ℎ, 𝑠𝑜𝑢𝑡ℎ, 𝑒𝑎𝑠𝑡,𝑤𝑒𝑠𝑡}. Every UAV is equipped
with a down-facing camera that is able to monitor a set of cells
centered around its position 𝑆𝑂 (𝑢) = {𝑠′ ∈ 𝑆𝐴 (𝑢.𝑠,𝑢.𝛿𝑂 )}.

2.2.5 Mission Requirements. During operation, the team of UAV
should satisfy the set of requirements captured in Table 1. Re-
quirement R1 captures the effective tracking of the wildfire and
consists in maximizing the informative value of the set of moni-
tored cells during system operation (metric𝑀𝑅1). In the expression,
𝜈 : 𝑆 → R≥0 is a function that assigns a constant informative (i.e.,
utility) value 𝐶 ∈ R+ to a cell 𝑠 in the grid if it is burning and not
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Table 1: Mission requirements for UAV wildfire tracking.

Id Description

R1 Effective wildfire monitoring. UAV should maxi-
mize the informative value of the monitored area in
which the wildfire is active during the mission, which
is designated by MR1 =

∑𝑇
𝑡=0

∑
𝑠∈⊎𝑢∈𝑈 (𝑆𝑂𝑡 (𝑢 ) ) 𝜈𝑡 (𝑠).

R2 Collision risk avoidance. The system should mini-
mize the number of events in which UAV are in close
proximity (i.e., closer than safety distance threshold
𝛿𝑠 ), which is designated by MR2 =

∑𝑇
𝑡=0 |𝑒𝑡 (𝑈 ) |/2,

where 𝑒𝑡 (𝑈 ) = {(𝑡,𝑢,𝑢′) ∈ [0,𝑇 ] × 𝑈 × 𝑈 | 𝑢 ≠

𝑢′ ∧ 𝑑𝑖𝑠𝑡 (𝑢.𝑠𝑡 , 𝑢′ .𝑠𝑡 ) ≤ 𝛿𝑠 }.

covered by smoke (i.e., 𝜈𝑡 (𝑠) = 𝐶 if 𝐵𝑡 (𝑠) = 1 ∧ 𝜅𝑡 (𝑠).𝛾 = 0), and
zero, otherwise. Note that the use of

⊎
in the expression avoids ac-

cruing value for the same cell more than once when it is monitored
by more than one UAV. Requirement R2 targets safety during opera-
tion by defining metric𝑀𝑅2, which counts the number of instances
in which two UAV are closer than a safety distance threshold 𝛿𝑠 .

3 IMPLEMENTATION AND CUSTOMIZATION
The user of our simulator will interact with files 𝑚𝑎𝑖𝑛.𝑝𝑦 and
𝑐𝑜𝑚𝑚𝑜𝑛_𝑓 𝑖𝑥𝑒𝑑_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.𝑝𝑦. While the former executes the simu-
lator itself, the latter is mainly used for setting different parameters
for the simulation. There are other Python classes that implement
different features of the simulator. All code is documented for a bet-
ter understandability1. In the following, we describe some relevant
features and different customization possibilities of the simulator
and the UAV.

3.1 Simulation customization
The graphical interface of the simulator is built on the Mesa frame-
work [7], which allows to show on a web page, using JavaScript, a
grid with cells of different colors. Class common_fixed_variables.py
allows to customize several variables for having different simu-
lation experiences. Table 2 gives an overview of most of these
variables—some variable names have been shortened in the table
for visualization purposes.

To begin with, variables WIDTH and HEIGHT set the grid size, in
number of cells, while BATCH_SIZE is used to establish how long
the simulation will run, in number of time steps.

Each cell’s color and shape at all times depend on a function
called agent_portrayal(), which is in charge of drawing elements
such as UAV, fire, smoke, and forest cells. Several variables can be
customized for defining color palettes for different types of ele-
ments. We define color palettes based on 12 colors, which gives
a certain aspect of reality to the simulation according to what is
happening in the data model. As for the vegetation colors, they are
set by VEGETATION_COLORS, whose default values are displayed in
Listing 1. While the first value is used for depicting the absence of
vegetation, the following values represent an ascending gradient of

1The package with code and documentation for Wildfire-UAVSim can be downloaded
from: https://github.com/atenearesearchgroup/Wildfire-UAVSim

Table 2: Simulator’s customizable parameters

Variable Type Measure
WIDTH, HEIGHT Int Grid size
BATCH_SIZE Int Simulation duration (# timesteps)
VEGETAT_COL List 12-color palette for depicting vegetation
FUEL_UP_LIMIT Int Maximum amount of fuel in a cell
FUEL_BOT_LIMIT Int Minimum amount of fuel in a cell
DENSITY_PROB Double Overall vegetation density
BURNING_RATE Int Fuel burning speed
FIRE_SPR_SPEED Int Fire spreading speed
FIRE_COLORS List 12-color palette for depicting fire
ACTIVATE_WIND Bool Wind affects the wildfire spread
FIXED_WIND Bool Wind blows one of the 4 cardinal points
WIND_DIRECT Enum Only direction the wind blows
FIRST_DIR Enum One of the directions the wind blows
SECOND_DIR Enum The other direction the wind blows
FIRST_DIR_PROB Double Wind’s first direction predominance
MU Double Wind strength
ACTIV_SMOKE Bool Fire generates smoke
SMKE_PD_CT Int Smoke pre-dispelling counter
SMOKE_COLORS List 12-color palette for depicting smoke
PROB_MAP Bool Fire spread probabilities are displayed
BW_COLORS List 12-color palette for spread probabilities

green shade, which represent an ascending vegetation density, i.e.,
amount of burnable fuel. If the data model contains more than 12
different values for the vegetation density, these values are normal-
ized so that they can be graphically represented with the 12-color
palette—normalize_fuel_values() function is in charge of this.

VEGETATION_COLORS = ["#414141", "#9eff89", "#85e370", "#72d05c",

"#62c14c", "#459f30", "#389023", "#2f831b",

"#236f11", "#1c630b", "#175808", "#124b05"]

Listing 1: Customizing vegetation color

There is a set of variables for setting the vegetation over the grid.
For initializing the vegetation density in each cell, i.e., the burn-
able fuel amount (𝐹 : 𝑆 → N, cf. Section 2.2.1), FUEL_UPPER_LIMIT
and FUEL_BOTTOM_LIMIT variables establish the maximum and
minimum amount of burnable fuel present in each cell, respec-
tively. Regarding the overall vegetation distribution over the grid,
DENSITY_PROB is a value in the range [0, 1] that establishes the
percentage of the grid covered by vegetation, i.e., this variable
sets the percentage of cells that will have vegetation. Therefore,
these three variables determine how vegetation is set all over the
grid, as well as its density in each cell, every time the simulator is
initialized—different vegetation distributions can appear in different
simulations.

Two variables customize how fire evolves. BURNING_RATE (𝛽
in our formalization, cf. Section 2.2.1) sets the fuel decay speed in
terms of time steps, while FIRE_SPREAD_SPEED (℧ as explained in
Section 2.2.1) sets how fast fire spreads to other cells, also in terms
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Figure 2: Wildfire propagation in a 50x50 cell grid

of time steps. The formalization of the fire evolution is detailed in
Section 2.2.1. As for depicting fire in the grid, variable FIRE_COLORS
is used, with a color palette evolving from yellow to red in the
default configuration. Figure 2 shows the propagation of a fire
where all cells have some vegetation. We can see that different
cells have different green shades, representing different vegetation
densities. Similarly, fire shows different colors depending on how
active it is, while cells where both vegetation and fire have been
extinguished are displayed in gray. For showing how the above-
mentioned DENSITY_PROB variable affects a simulation, Figure 3
displays a simulation in which the DENSITY_PROB has been set
to 0.5. In both simulations, the variables FUEL_UPPER_LIMIT and
FUEL_BOTTOM_LIMIT have been set to 7 and 10, respectively.

Figure 3: Wildfire propagation in a 50x50 cell grid with DEN-
SITY_PROB = 0.5

Then, there are some variables for customizing wind’s behavior.
First, ACTIVATE_WIND sets whether the fire spread is influenced
by wind. If it is, we can have wind blowing one specific direction
out of the 4 cardinal points (for instance, north) or it can blow
two directions (such as north-west). If FIXED_WIND is active, then

Figure 4: Wildfire propagation in a 50x50 cell grid with wind
blowing south-east with FIRST_DIR_PROB = 0.8 and MU = 0.9;
and with smoke with SMOKE_PRE_DISPELLING = 2

wind blows in the direction set by WIND_DIRECTION. If it is not,
it means wind blows two directions, specified by FIRST_DIR and
SECOND_DIR. Since wind can blow a direction stronger than the
other one, FIRST_DIR_PROB establishes the wind first direction’s
predominance. It is a value in the interval [0, 1]. This means that
wind’s predominance in the other direction is 1−FIRST_DIR_PROB.
For instance, if wind blows north-west and FIRST_DIR_PROB is 0.6, it
means that wind is affected by the north component in a 60% and by
the east component in a 40%. MU sets how strong wind blows with
a value in the range [0, 1]—characterized by 𝜇 in the formalization
of Section 2.2.2.

Regarding smoke, variable ACTIVATE_SMOKE sets whether smoke
will be part of the simulation, and SMOKE_PRE_DISPELLING estab-
lishes how fast smoke appears after fire starts in a cell, formalized
by 𝜅𝑡 (𝑠) .𝛾𝛼 in Section 2.2.3. The pace at which smoke dispels de-
pends on the amount of burning fuel (𝜅𝑡 (𝑠).𝛾𝜔 in Section 2.2.3),
and it is controlled by the dispelling_counter_start_value variable in
the Smoke.py class. Variable SMOKE_COLORS is used for represent-
ing smoke with an ascending gradient of grey shades, similarly
as explained before for VEGETATION_COLORS and FIRE_COLORS.
However, in the current implementation, we use only one color for
smoke since, as mentioned in Section 2.2.3, smoke in our simulator
has a constant density. It is part of our future work to integrate dif-
ferent levels of density for the smoke, which would allow different
degrees of partial visibility over the area. Figure 4 displays how the
simulation evolves when wind and smoke are present—smoke is
represented in light gray, while burnt forest area has a dark gray
color. In particular, wind blows south-east with FIRST_DIR_PROB =
0.8 and MU = 0.9. Regarding smoke, SMOKE_PRE_DISPELLING is set
to 2.

Finally, users can also decide whether to visualize the probabil-
ity of the fire to spread to each cell at all times. This is a special
visualization mode that can be set by activating PROBABILITY_MAP
variable. In this mode, only black, gray and white colors are dis-
played, according to the color palette specified in a variable named
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Table 3: UAV’s default parameters

Variable Measure Default value
NUM_AGENTS Number of UAV 3
N_ACTIONS UAV’s possible movements {n,e,w,s}
OBS_RADIUS UAV’s observation radius 8
side Side size of observed area (OBS_RADIUS * 2) + 1
N_OBSERV Number of cells observed 𝑠𝑖𝑑𝑒2

SEC_DIST Security dist among UAV 10

BLACK_AND_WHITE_COLOR. Such a visualization mode is like the
one shown in Figure 1.

3.2 UAV customization
In Table 3 we can see the different features for the UAV that can
be set in common_fixed_variables.py file—some variable names have
been shortened in the table. While NUM_AGENTS establishes the
amount of UAV that will fly over the forest area (zero indicates
the simulator will simulate only the wildfire spread), N_ACTIONS
specifies the number of possible actions each UAV can take when
deciding on amove, which we set as [north, east, west, south]. Variable
UAV_OBSERVATION_RADIUS sets the observation radius—technically
it is not really a radius, since observed areas have square shapes.
In particular, this measure is used for computing the side of the ob-
servation square. Variable N_OBSERVATIONS uses the side to define
the number of cells in the observation area of each UAV through
their downwards-facing camera, in our case a square area. Finally,
SECURITY_DISTANCE establishes the minimum distance that UAV
should be separated from each other for avoiding collisions.

As for the way to obtain each UAV’s partial observation, we
have the state() function, as depicted in Listing 2. The first for loop
obtains the amount of burning cells for each agent, through sur-
rounding_states() method. The obtained observation lists contain
ones for cells that are burning, and zeros for cells that are not. If an
UAV is near an edge, the observed number of cells will be lower—
since some observed cells would be out of the grid. However, the
Mesa framework forces to constantly have the same number of
observed cells. Therefore, the second for loop adds a zero in those
positions of the list that would correspond to cells that cannot be
observed.

1 def state(self):

2 states = []

3 for agent in self.schedule.agents:

4 if type(agent) is agents.UAV:

5 surrounding_states = agent.surrounding_states()

6 states.append(surrounding_states)

7

8 for st, _ in enumerate(states):

9 counter = len(states[st])

10 for i in range(counter, N_OBSERVATIONS):

11 states[st].append(0)

12 return states

Listing 2: Function to obtain each UAV partial observation

4 SIMULATOR EXECUTION
4.1 Main loop
For building the graphical interface, the Mesa framework requires
instantiating the CanvasGrid class, which holds the simulator logic.
This class overwrites the step()method, which is executed every sim-
ulation time step, and allows to introduce any behaviour that must
be executed repeatedly. This means that each type of agent (such
as UAV and Fire agents in our case) implements a step() function
for expressing its own logic, which is called from the CanvasGrid
step() function. There is also an important Mesa class instantiated as
scheduler, which is in charge of executing the main and the agents
inner loops, and can be used for checking simulation elements
states.

1 def step(self):

2 self.datacollector.collect(self)

3

4 # check if simulation ended, if so print MR1 and MR2 overall metrics,

5 # and finish loop. Otherwise, keep executing.

6 if BATCH_SIZE == self.evaluation_timesteps_counter - 1:

7 print(" --- MR1 --- ")

8 print(self.MR1_LIST)

9 print(" --- MR2 --- ")

10 print(self.MR2_VALUE)

11 sys.exit(0)

12

13 if sum(isinstance(i, agents.UAV) for i in self.schedule.agents) > 0:

14 state = self.state() # s_t

15 # self.new_direction is used to execute previous obtained a_t

16 self.new_direction = [SYSTEM_RANDOM.choice(range(0, N_ACTIONS))

17 for i in range(0, self.NUM_AGENTS)] # a_t

18

19 # TODO: algorithm/s calculation with partial state

20 # reward = self.algorithm(state) # r_t+1

21

22 # TODO: an EXAMPLE of analytics extraction can be seen.

23 # However, your own implementations can be applied as well.

24 self.MR1(state)

25 self.MR2()

26

27 self.set_drone_dirs()

28

29 self.evaluation_timesteps_counter += 1

30 self.schedule.step()

Listing 3: Simulator main loop function

An example of the main step() method can be seen in Listing
3. This example contains pieces of code that serve as a guide for
implementing own functionalities. Lines 2 and 30 are used for the
scheduler management, which needs to be inside the main step()
method. In line 29, the evaluation counter is incremented to update
the current simulation time step. Line 13 uses the scheduler for
checking the amount of existing UAV in the simulation. If there
are no UAV, the simulation keeps executing. Otherwise, line 14
is used to call the previously described state() method. Line 19
would allow to obtain and execute new actions, based on each
UAV partial observation. Since, ideally, the observation of a team
of UAV should comply with the mission requirements explained in
Section 2.2.5, line 20 is an example of how rewards from the UAV’s
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performance could be collected for obtaining statistics about the
algorithm performance, as well as other desired metrics.

As a default example of how an UAV team could make and
execute actions, a random selection example is shown in line 16. In
particular, it sets a list of actions for moving the UAV team, which
in this case is randomized, i.e., each UAV decides its next action
randomly, without taking into account the fire. Also, set_drone_dirs()
method (line 27) is used to manage the directions obtained from
the new_direction attribute, and make the UAV team move over the
forest area. An example of how a setting such as this one with three
drones (NUM_AGENTS = 3) would evolve in time is displayed in
Figure 5. We can see that the UAV are displayed as black cells, and
their monitored area is envisioned with dashed squares.

4.2 Obtaining simulation results
In the main loop it is also included how to compute the simulation
results in terms of the effectiveness of the UAV’s observation. For
this, the mission requirements described in Section 2.2.5 and Table 1
are used. In Listing 3, the calculation of the metrics described in the
table is performed in lines 24 and 25. Line 24 executes the self.MR1()
method, allowing to obtain the effective wildfire monitoring metric
(MR1), in each time step, passing state as a parameter. Similarly,
line 25 executes self.MR2() method for obtaining the collision risk
avoidance metric (MR2 ), for which the SECURITY_DISTANCE variable
is used (cf. Section 3.2). This parameter keeps track of how often
UAV overpass their security areas with respect to the other UAV.
Finally, lines 6-11 compose an if statement for printing the final
metrics calculated over all simulation time steps, and finishing the
program when the counter reaches the end of the simulation.

4.3 Discussion
Please note that the UAV’s random movements explained above
represent a very simple and not realistic setting, but it serves for
demonstration purposes. More sophisticated algorithms can be
added to our simulator for complying with the mission require-
ments explained in Section 2.2.5. For instance, we have developed
two different algorithms for managing the UAV (described in [10]).
One of them is an extension and adapted version of a state-of-
the-art reactive approach based on Deep-Q-Networks (DQN) that
solves an analogous adaptation problem [4]. The other algorithm is
our own implementation based on Predictive Coordinate Descent
(PCD) [9], which is used primarily in machine learning and data
analysis. Our simulator allows to visualize how the UAV behave
in different scenarios depending on the chosen algorithm. Besides,
thanks to the rewards obtained by both algorithms, it is also possible
to evaluate which algorithm is more effective in different scenarios
with different observability conditions. In particular, we performed
experiments in which both PCD and DQN were evaluated under
four scenarios: (i) normal operating conditions (no wind, no smoke),
(ii) harsh operating conditions (wind, no smoke), (iii) partial ob-
servability conditions (smoke, no wind), and (iv) harsh and partial
observability conditions (wind and smoke).

Finally, it is worth mentioning that the MESA framework allows
to perform simulations without a graphical interface. Evidently,
this saves computation time, so it is very useful when we want
to quickly obtain the results of the simulation. For instance, this

Figure 5: Random action selection for the UAV team

was very handy when we compared the performance our PCD and
DQN implementations, since we needed to perform the average
execution time of more than 30 simulations so that times were
representative. This is also of use when comparing the effectiveness
of both algorithms because, again, we are only interested in their
rewards at the end of the executions.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented Wildfire-UAVSim, a customizable
simulator of wildfires over a forest area that can be monitored by
unmanned aerial vehicles (UAV). We have formalized the problem
of the fire evolution by also considering wind and smoke, and
have also formalized the UAV’s movements as well as their mission
requirements. We have also described the parameters than can be
customized in our simulator and the possibilities for enriching the
UAV with different behaviors for their monitoring tasks.

We plan to make our wildfire simulation more realistic. At the
moment, smoke has a constant density, so we plan to consider
different density levels, which means different degrees of visibility.
We also plan to include slopes in the forest area that will make fire
spread differently in hills and flat areas. Beyond different vegetation
densities, we also plan to consider different types of vegetation. For
instance, oaks resist fire better than pines, which burn quickly.
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