A Template—Based Approach to Describing
Metamorphic Relations

Sergio Segura, Amador Durén, Javier Troya and Antonio Ruiz Cortés
Department of Computer Languages and Systems
University of Seville, Seville, Spain
{sergiosegura,amador,jtroya,aruiz} @us.es

Abstract—Metamorphic testing enables the generation of test
cases in the absence of an oracle by exploiting relations among
different executions of the program under test, called metamor-
phic relations. In a recent survey, we observed a great variability
in the way metamorphic relations are described, typically in
an informal manner using natural language. We noticed that
the lack of a standard mechanism to describe metamorphic
relations often makes them hard to read and understand, which
hinders the widespread adoption of the technique. In this paper,
we propose a template-based approach for the description of
metamorphic relations. The proposed template aims to ease
communication among practitioners as well as to contribute to
research dissemination. Also, it provides a helpful guide for
those approaching metamorphic testing for the first time. For
the validation of the approach, we used the proposed template
to describe 17 previously published metamorphic relations from
different domains and groups of authors, without finding expres-
siveness problems. We hope that this work eases the diffusion and
adoption of metamorphic testing, contributing to the progress of
this thriving testing technique.

Keywords-Metamorphic testing, metamorphic relation, tem-
plates

I. INTRODUCTION

Metamorphic testing enables the generation of test cases
when the expected output of a program execution is complex
or unknown [1], [2]. To that purpose, rather than checking the
correctness of each individual program output, metamorphic
testing checks whether multiple executions of the program
under test fulfill certain conditions referred to as metamorphic
relations. A metamorphic relation is a necessary property of
the program under test that relates two or more input data
and their expected outputs, e.g. sin(x) = sin(—x). In the last
two decades, hundreds of metamorphic relations have been
reported in a variety of domains including web services and
applications [3], computer graphics [4], compilers [5], machine
learning [6] and cybersecurity [7].

In a recent survey, some of the authors reviewed 119 papers
on metamorphic testing published in the last two decades [8].
We observed that most metamorphic relations are informally
described using natural language, which may lead to misun-
derstandings and communication problems among researchers
and practitioners. We also found that key information about the
relations was often omitted or simply assumed to be known by
the reader. Additionally, we found a great variability in the way
metamorphic relations are described, which makes them hard
to read and understand. We think that this variability could

be explained by the degree of expertise on the technique. We
observed that experienced researchers tend to clearly identify
metamorphic relations including helpful data as identifiers,
preconditions or examples. Conversely, newcomers on the
technique usually describe the relations informally as a part
of the main research text, omitting key information like a
precise definition of the program’s inputs and outputs. Finally,
some authors have proposed to use formal notation to describe
metamorphic relations, but their approaches have not been
widely adopted probably due to the difficulty to be understood
by all stakeholders [9].

The problem of capturing and expressing information in a
way that it is understandable for users with different degree of
expertise has been addressed in fields such as requirements en-
gineering [10], experimentation [11] and software metrics [12],
[13]. A classical approach to address this problem is the use
of templates. A femplate is a combination of placeholders and
linguistic formulas used to describe something in a particular
domain, e.g. an experiment. Templates facilitate communica-
tion among practitioners, contribute to research dissemination,
and provide a helpful guide for beginners.

In this paper, we present a template—based approach for
describing metamorphic relations. The proposed template is
based on the structure of metamorphic relations observed in
the literature, and it is also inspired by related and widely
adopted templates in various fields of software engineer-
ing [10], [11], [12], [13]. The template is intentionally simple
and flexible to foster its adoption by the metamorphic test-
ing community. To this purpose, the template specifies what
data should be included in the description of a metamorphic
relation, but not how it should be specified: using natural
language, formal languages, or a combination of both. To
support the evolution of the template (e.g. when feedback from
other researchers is received), it has been fully specified in a
separated document subjected to version control and accessible
on the Web [14]. For the evaluation of our approach, we used
the template to describe 17 previously published metamorphic
relations from different domains and groups of authors. This
helped us to refine and validate the template, which showed
to be expressive enough to represent all the subject relations.

The remainder of this paper is structured as follows. In
Section II, we introduce and formalize the concepts of meta-
morphic relation and metamorphic testing. Section III presents
the proposed template. Several examples of metamorphic

relations described with the proposed template are presented in
Section IV. Section V describes the validation procedure. The
related work is discussed in Section VI. Finally, we summarize
our conclusions and the outlook to future work in Section VII.

II. METAMORPHIC TESTING

Metamorphic testing provides a mechanism to test a pro-
gram when the expected output of a test execution is unknown
or hard to compare with the actual output; this is known as
the oracle problem [15]. To this purpose, instead of checking
individual program outputs, metamorphic testing exploits the
relations among the inputs and outputs of multiple executions
of the program under test. Each of those relations is referred to
as a metamorphic relation. For instance, consider the program
avg(a,b), which returns the average value of two integers a
and b. The order of the parameters should not influence the
result, which can be expressed as the following metamorphic
relation: avg(a,b) = avg(b,a). A metamorphic relation con-
sists of the so—called source test cases, e.g. avg(a,b), and
one or more follow—up test cases derived from the source
test cases, e.g. avg(b,a). A metamorphic relation can be
instantiated into one or more metamorphic tests by using
specific input values, e.g., avg(2, 3) = avg(3, 2). If the outputs
of a source test case and its follow—up test case(s) violate the
metamorphic relation, the metamorphic test is said to have
failed, indicating that the program under test contains a bug.

Metamorphic testing was introduced as an approach to reuse
existing test cases by Chen et al. back in 1998 [1]. Since
then, the research community have realized the potential of
the technique to alleviate the oracle problem and to enable
the automated generation of test cases. In the last two decades,
a vast array of applications and innovative improvements to
the technique have been presented, as well as evidences of
real bugs being detected by metamorphic testing in tools
such as the GCC compiler [5], the machine learning system
RapidMiner [16] or the NASA Data Access Toolkit [17].

In what follows, we present the formal definitions of meta-
morphic relation and metamorphic testing, used as the basis
for the design of the proposed template.

A. Formal model for a metamorphic relation

In the seminal work by T. Y. Chen et al. [1], a meta-
morphic relation with respect to a function f was defined
as a logical implication between a relation R; defined over
a sequence of inputs (xi,...,x,) where n > 2, and a
relation R, defined over the corresponding sequence of outputs

(f(x1), ..., flxn)), Le.

w()) =~ (1))

Although this definition was expressive enough for simple
metamorphic relations such as:
Xg = x1 + 360° = sin(xy) = sin(xz)

it has been later updated in order to make it more generally
applicable [4], [18], [19]. In these new definitions, a metamor-
phic relation with respect to a function f is defined as a relation

over a sequence of inputs (xi, ...
corresponding sequence of outputs (f(x1), ...

, X,) where n > 2 and their

o)) ie.
O (FG)))

i=1l..n

=
N
~
L s
S ~—

In this definition, the sequence of n inputs (x;) is the
concatenation (using), the sequence concatenator operator)
of two subsequences: the subsequence of m source test cases
inputs (x;) and the subsequence of (m—n) follow—up test cases
inputs (x;), i.e.

(x) 7 (x)

Xi > =
.n k=l.m j=(m+1)..n

i=1.
The follow—up inputs can be determined from the source
inputs and their corresponding outputs using follow—up gen-
erator functions (also called mappings in [19]), i.e.

(5) = G((x) ()

j=(m+1)..n k=1..m 1..m

For example, in the previous example, the follow—up gen-
erator function (using only the source test cases but not their
outputs) is G(x) = x + 360°.

In practice, and in line with the formal definition given
by Chan et al. in [4] and [18], we have observed that
metamorphic relations are expressed as logical implications
using as an antecedent a relation defined over the source
inputs, their outputs and the follow—up inputs (including a
source—to—follow—up mapping), and as a consequent a relation
over all inputs and outputs, especially follow—up outputs not
included in the antecedent. Thus, a metamorphic relation can
be formally described as follows.!

B. Formal model for metamorphic testing

Following T. Y. Chen et al. [19], the metamorphic testing of
an implementation P of a function f with a metamorphic rela-
tion defined is the process by which the metamorphic relation
is checked but replacing the function by its implementation,
ie.

Ri<<xk>’ <xj>7 <f(xk)>>:>Ro< xi>7<P(xi)>>
k=1.m j=(m+1).n k=l..m i=1..n i=1..n
This replacement is also applied in the generation of the
follow—up inputs if needed, i.e.

()= G((x), (Plx)))
j=(m+1)..n k=1..m k=1..m
If the relation is not satisfied in all the generated follow—up
test cases, i.e. pairs (x;, P(x;)), the metamorphic testing of P
reveals that is faulty.

! Although this expression can be simplified to R;(x;,fi) = R, (xi,f;), and
even to R(x;,f;) as shown in [19], we prefer to explicitly differentiate between
the source and the follow—up test cases, and to remark the logical implication.

III. TEMPLATE FOR METAMORPHIC RELATIONS

In this section, we present the proposed template to describe
metamorphic relations based on the formal definition presented
in the previous section. For its design, we took inspiration
from some related approaches such as the Goal-Question—
Metric (GQM) template used in the field of software mea-
surement [20], [12], [13], and in particular from the GQM-
based template proposed by Wholin et al. [11] in the context
of software experimentation (see the related work Section
for details). In syntactic terms, we have opted by a textual
format rather than a tabular structure because we find it more
natural and easy to include in research papers. To facilitate
its integration into formal documents, a LaTeX template is
provided as supplemental material®.

The template for describing metamorphic relations is shown
below, where the placeholders are depicted between < and
> and optional sections are enclosed between square brackets.

In the domain of <application domain>

[where <context definition>]

[assuming that <constraints>|

the following metamorphic relation(s) should hold
o <metamorphic relation name;>:

if <relation among inputs/outputs>
then <relation among inputs/outputs>

o <metamorphic relation name,>:

if <relation among inputs/outputs>
then <relation among inputs/outputs>

The template placeholders have the following meaning:

application domain
This is the application domain in which the
metamorphic relations apply. For example: general
domains such as search engines, code obfuscators or
machine learning; specific versions of software tools
such as Weka 2.1; software services like Google
search, etc.

context definition

The context definition includes all necessary
definitions of concepts, variables, notations, etc.
used in the definition of the metamorphic relations
and that are essential for their proper understanding.
The section containing this placeholder is considered
as optional because depending on the complexity
of the metamorphic relations and the degree of
formalization, could not be strictly necessary.

constraints
In this optional section, some constraints can be
specified indicating necessary conditions for the

Zhttps://gestionproyectos.us.es/projects/mr-template/wiki

metamorphic relation to be applicable.

metamorphic relation name
This is the name of the metamorphic relation being
defined. Ideally, it could be a meaningful name,
but a simple label is also acceptable in order to
distinguish it from other metamorphic relations
defined in the same template.

relation on inputs & outputs
These are logical implications in which both the
antecedent (the if placeholder) and the consequent
(the then placeholder) are relations defined over the
function inputs and outputs.

IV. EXAMPLES

In this section, some examples of use of the proposed tem-
plate are provided, illustrating different definition approaches.
In all the examples, we have tried to follow as much as
possible the names and the definition style used by the original
authors.

A. Simple descriptions

In this section, we show how the template can be used to
describe metamorphic relations in a simple way. The relation
below (named MR; as in the original paper) was presented
in the context of cybersecurity by Chen et al. [7]. Roughly
speaking, it states that the obfuscated version of equivalent
programs should also be functionally equivalent. Note that
the description has neither context definition nor constraints,
as these are optional sections.

In the domain of cybersecurity (code obfuscators)
the following metamorphic relation(s) should hold
. MR]_:

if two different source programs, P; and P, are
functionally equivalent
their obfuscated versions, O(P;) and O(P2))
should also be functionally equivalent and, there-
fore, the compiled obfuscated executable pro-
grams, C(O(Py)) and C(O(P3)), should have
equivalent behavior, i.e. the same outputs for the
same inputs.

then

The following metamorphic relation (MR,,4.,) Was proposed
by Lindvall ef al. [21] to address acceptance testing of NASA’s
Data Access Toolkit (DAT). DAT is a large database of teleme-
try data collected from different NASA missions, including an
advanced query interface to search and mine available data.
Metamorphic testing was used by formulating the same query
in different equivalent ways, and asserting that the resulting
datasets were equal to each other.

In the domain of the NASA’s Data Access Toolkit (DAT)
where

e q1,92,-..,q, With n > 2 are equivalent search queries
for the DAT system, i.e., they have the same parameters
and parameter values, and return the same result set

e R(g;) is the result set returned by query g;.

the following metamorphic relation(s) should hold
° MRorder:
if the order of the parameters in any of the queries
q1,92,- - -,qn is changed
R(q1) = R(q2) = ... = R(qu), i.e. all queries
return the same result set.

then

B. Descriptions with constraints

Some metamorphic relations may include constraints
that limit their applicability to a subset of the input or
output space. For instance, Zhou et al. [3] proposed several
metamorphic relations to address metamorphic testing of
online search engines. To avoid inaccuracies caused by the
search engine optimizations (such as results being omitted to
improve response time), the applicability of the relations was
restricted to searches that returned between 1 and 20 results.
The description of one these relations (named MPReverseJD
as in the original paper), including the previous constraint, is
shown next.

In the domain of Google search
assuming that

« the number of results of the source search query is greater
than zero and less than or equal to 20 in order to avoid
inaccuracy caused by empty and large result sets

the following metamorphic relation(s) should hold
e MPReverseJD:
if the search terms of a given query are set in
reverse order
the result of the new query must be similar to

the results of the former one applying Jaccard
similarity.

then

C. Descriptions with a common context definition

The following instance of the proposed template shows
several metamorphic relations sharing the same context
definition. We found that this is a common scenario in the
metamorphic testing literature. These relations were proposed
in the context of metamorphic testing of machine learning
classifiers by Xie er al. [6]. Note that, as in the original
paper, the names of the metamorphic relations include both
an identifier and a descriptive sentence.

In the domain of machine learning classifiers
where

o S is the training data set.

e Iy is a source test case, i.e., a data sample (ap,d; ... dy—1)

e [; is the class label obtained as the output of #.

« an uninformative attribute is one that is equally associated
with each class label.

the following metamorphic relation(s) should hold
o MR-2.1 Addition of uninformative attributes:

if in the follow-up input, an uninformative attribute
is added to each sample in S and to £
then the output of the follow-up test case should still

be li.
e MR-5.1 Removal of classes:
if in the follow-up input, we remove one entire

class of samples in S of which the label is not /;
the output of the follow-up test case should still
be l,'.

then

D. Formal descriptions

The proposed template can be used to describe metamorphic
relations using both natural and formal languages, or a
combination of both. To illustrate this, some of the relations
presented by Chen et al. [7] and Zhu et al. [3] are described
below using a formal style, including also natural language
in order to make the formal expressions easier to understand.
Note that two of the relations (MR, and MPReverseJD) were
informally described in previous sections. This shows how
the template can be used to describe the same relations with
an informal or a formal style, and with a different level of
detail.

In the domain of cybersecurity (code obfuscators)
where

e p, p1 and py are computer programs.

e () is a program obfuscation function.

o Q(p)@[t] is the obsfuscation of p at a given time .

e = is the program functional equivalence relation.
the following metamorphic relation(s) should hold

. MRll

if p1 = p2, ie. p1 and po are functionally
equivalent
then Q(p;) = Q(p2), i.e. the obsfucations of p; and
p2 are also functionally equivalent.
. MRQ:
if { t; }i=1., are different times
then Vi: 1l.n—1 e Q@[] = Qp)@[tit1],

i.e. the obfuscation process does not depend on
the obfuscator environment (time of execution in
this case).

In the domain of Google search
where

o site: is a Google search operator that specifies domains,
€.g. site:nbc.com.

e ¢ and g5 are queries represented as sequences of con-
junctive search criteria, i.e. ¢; = (¢)., ,
« an exact word or phrase is a search criterion, e.g. “side
effect of antibiotics in babies”.
e site:d is also a search criterion.
e R(q) is the result set of web pages returned by a given
query g, i.e. R(q) = { px }=1..m
o #R(q) is the size of R(q).
o 7 is the sequence concatenation operator.
e rev is the reverse sequence function, i.e.
(¢ >j:1..n = rev(q) = (¢ >j:n,_1
assuming that
o 0 <#R(q1) <20
the following metamorphic relation(s) should hold
o MPSite:

if g2 = q1 ~ site:d where d is the domain of one
of the web pages in R(q1)

then R(g2) C R(q1), i.e. the results of g2 must be a
subset of the results of ¢

e MPReverseJD:

if g2 = rev(q1), i.e. g2 is the reverse of ¢,

then R(g2) ~ R(q1), i.e. the results of g5 are similar
to the results of g1 applying Jaccard similarity.

q =

As a further example, the following is a formal description
of one of the metamorphic relations presented by Segura et
al. [22] in the context of feature model analysis tools.

In the domain of feature model analysis tools
where

e M is a feature model.

o II(M) is a function returning the set of products of a

feature model M.

e # is the cardinality function on sets.
the following metamorphic relation(s) should hold

o MR Mandatory:

if M’ is derived from M by adding a mandatory

feature f,, as a child feature of f,
#I(M') = #I(M) A
Vpell(M) e
hgp = pellM) A
fep = (pU{fn}) € (M)

then

V. VALIDATION

For the validation of our approach, we used the proposed
template to describe several metamorphic relations found in
the literature, trying to identify expressiveness problems. To
this purpose, we selected 10 metamorphic testing papers, from
35 different authors and 8 different application domains, from
which 17 metamorphic relations were selected to be described
using our approach. We may remark that these relations
were randomly selected with the only purpose of having a
representative pull of metamorphic relations, and not because

we identified any specific limitations in them. Table I depicts
the list of selected papers including publication year, short list
of authors, title, application domain, and reference. Five of the
papers were published in journals, and five in conferences or
workshops. Some of the selected metamorphic relations were
presented in the previous section to illustrate the use of the
template. Owing to space limitation, the full set of relations
are described in a technical report [14].

The validation process was iterative. First, the selected
papers were divided and distributed among three of the au-
thors. Each author randomly selected between one and three
metamorphic relations from each paper and described them
using the template. Then, several meetings were arranged to
discuss the raised issues such as the exact linguistic forms
used or how expressing multiple relations sharing the same
context (where section of the template, see Section III). Some
of these issues where addressed by introducing minor changes
in the template. The process was then repeated by updating
the described relations and debating about them, until no
expressiveness problem was found and a strong consensus was
reached among all the authors.

VI. RELATED WORK

In this section, we review some related templates in the
context of software engineering.

The Goal-Question—Metric (GQM) method proposes a tem-
plate to support software measurement [20], [12], [13]. The
approach is based on the idea that for an organization to
measure any aspect of software development it must first
specify the goals, including the object for which it is defined,
and the interested viewpoint, e.g. improve the timeliness of
change request processing from the project manager’s view-
point. Then, the organization must trace those goals to a
number of questions to characterize how the achievement of
a specific goal is going to be performed, e.g. what is the
current change request processing speed? Finally, a number
of metrics must be defined in order to answer each question
quantitatively, e.g. average change processing time.

Durén et al. [10] proposed several templates and linguistic
patterns to assist engineers when gathering and documenting
user requirements. Templates were given in a tabular format.
For each type of requirement (e.g. information requirements,
use cases, etc.) a number of fields were recommended such
as author, purpose, description, time interval or importance
degree. Additionally, some parameterized linguistic patterns
were also proposed and introduced as a part of the templates,
e.g. “The system shall store the information corresponding to
<relevant concept>". Their approach is integrated into the
requirements management tool REM [27].

Wholin et al. [11] proposed using the GQM template to
describe experiments in software engineering. In particular,
the authors proposed using the goal template by Basili and
Rombach [20] as follows:

Analyze <object(s) of study>
for the purpose of <purpose>

Year Authors Title

Domain Ref.

2002 T.Y. Chen et al. Metamorphic Testing of Programs on Partial Differential Equations: a Case Study Numerical programs [23]
2004 T.H. Tse et al. Testing Context-Sensitive Middleware-Based Software Applications Embedded systems [24]
2009 W.K. Chan et al Finding failures from passed test cases: improving the pattern classification approach ~ Computer graphics [4]
to the testing of mesh simplification programs
2010 K.Y. Sim et al. Detecting Faults in Technical Indicator Computations for Financial Market Analysis Financial software [25]
2010 X. Xie et al. Testing and validating machine learning classifiers by metamorphic testing Machine learning [6]
2011 F.-C. Kuo et al. Testing Embedded Software by Metamorphic Testing: a Wireless Metering System Case ~ Embedded software [26]
Study
2014 S. Segura et al. Automated metamorphic testing of variability analysis tools Software variability [22]
2015 Z.Q. Zhou et al. Metamorphic Testing for Software Quality Assessment: A Study of Search Engines Search database [3]
2016 T.Y. Chen et al. Metamorphic Testing for Cybersecurity Cybersecurity [7]
2016 M. Lindvall et al. Agile Metamorphic Model-based Testing Search database [21]

Table 1
SELECTED PAPERS

with respect to their <quality focus>
from the point of view of the <perspective>
in the context of <context>.

The template presented in this paper is mainly inspired by
the GQM template proposed by Wholin ef al. in the context
of experimentation. We chose a textual format because it
reads more naturally than tables and it is easier to integrate
in research papers. However, it would be straightforward to
translate it into a tabular format. In contrast to domain-specific
approaches as the one presented by Durédn er al. [10] in the
domain of requirement engineering, the proposed template
aims to be as generic as possible, making it suitable to describe
metamorphic relations from multiple domains using different
notations and levels of abstraction.

VII. CONCLUSION AND FUTURE WORK

Metamorphic testing is becoming a well-established disci-
pline with new applications, techniques, and empirical studies
rapidly proliferating. However, the lack of standard mech-
anisms to describe metamorphic relations is becoming an
obstacle for the dissemination of research results, and even-
tually for its adoption by industry. Inspired by how related
fields have approached this problem, in this paper we have
proposed a template for the description of metamorphic re-
lations. The template is intentionally simple and flexible,
allowing researchers to describe metamorphic relations in
their own way, but adhering to a basic structure in order to
make relations easy to read and understand. The template is
fully specified in a separated document subjected to version
control in order to support its evolution. We trust that this
template eases the adoption and dissemination of metamorphic
testing, contributing to the progress of this promising testing
technique.

Several challenges remains for future work. A more rigorous
validation of the proposed template should involve empirical
studies with human subjects. For instance, evaluating whether
people with different expertise can understand the template and
use it to describe metamorphic relations consistently. Also,
the mapping from template-based metamorphic relations to

executable code or test cases is a challenging topic that will
require further research.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
helpful comments and suggestions. This work has been par-
tially supported by the European Commission (FEDER) and
Spanish Government under CICYT project BELI (TIN2015-
70560-R), and the Andalusian Government project COPAS
(P12-TIC-1867).

REFERENCES

[1] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Technical Report HKUST-
CS98-01, Department of Computer Science, The Hong Kong University
of Science and Technology, Tech. Rep., 1998.

[2] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without
the need of oracles,” Information & Software Technology, vol. 45,
no. 1, pp. 1-9, 2003. [Online]. Available: http://dx.doi.org/10.1016/
S0950-5849(02)00129-5

[3] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software
quality assessment: A study of search engines,” IEEE Transactions on
Software Engineering, vol. 42, no. 3, pp. 264-284, March 2016.

[4] W. K. Chan, J. C. FE. Ho, and T. H. Tse, “Finding failures from passed
test cases: Improving the pattern classification approach to the testing
of mesh simplification programs,” Software Testing, Verification and
Reliability Journal, vol. 20, no. 2, pp. 89-120, Jun. 2010. [Online].
Available: http://dx.doi.org/10.1002/stvr.v20:2

[5] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI *14.
New York, NY, USA: ACM, 2014, pp. 216-226. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594334

[6] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and
T. Y. Chen, “Testing and validating machine learning classifiers
by metamorphic testing,” The Journal of Systems and Software,
vol. 84, no. 4, pp. 544-558, Apr. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2010.11.920

[7] T. Y. Chen, E. C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q.
Zhou, “Metamorphic testing for cybersecurity,” Computer, vol. 49, no. 6,
pp. 48-55, June 2016.

[8] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortes, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805-824, Sept 2016.

[9] Z. Hui and S. Huang, “A formal model for metamorphic relation
decomposition,” in Fourth World Congress on Software Engineering
(WCSE), 2013, Dec 2013, pp. 64-68.

[10] A. Durédn, B. Bernardez, A. Ruiz-Cortés, and M. Toro, “A requirements
elicitation approach based in templates and patters,” in 2nd. Workshop on
Requirements Engineering (WER), Buenos Aires, Argentina, Sep 1999,
p. 17-29.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer-Verlag
Berlin Heidelberg, 2012.

V. R. Basili, “Software modeling and measurement: The
goal/question/metric paradigm,” College Park, MD, USA, Tech.
Rep., 1992.

R. van Solingen and E. Berghout, The Goal/Question/Metric Method:
A Practical Guide for Quality Improvement of Software Development.
McGraw-Hill, 1999. [Online]. Available: https://books.google.co.uk/
books?id=EczdPAAACAAJ

S. Segura, A. Durdn, J. Troya, and A. Ruiz-Cortés, “Metamorphic
relation template v1.0,” Applied Software Engineering Research
Group, Tech. Rep. ISA-17-TR-01, Jan 2017. [Online]. Available:
http://www.isa.us.es/sites/default/files/ISA-17-TR-01.pdf
E. J. Weyuker, “On testing non-testable programs,”
Journal, vol. 25, no. 4, pp. 465-470, 1982.

C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime assertion
checking to automate metamorphic testing in applications without test
oracles,” in Second International Conference on Software Testing Veri-
fication and Validation, ICST 2009, 2009.

M. Lindvall, D. Ganesan, R. Ardal, and R. Wiegand, “Metamorphic
model-based testing applied on nasa dat — an experience report,” in
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 2, May 2015, pp. 129-138.

W. K. Chan and T. H. Tse, “Oracles are hardly attain’d, and hardly
understood: Confessions of software testing researchers,” in 13th Inter-
national Conference on Quality Software (QSIC), 2013, July 2013, pp.
245-252.

T. Y. Chen, P. Poon, and X. Xie, “METRIC: METamorphic
Relation Identification based on the Category-choice framework,”
Journal of Systems and Software, 2015. [Online]. Available: http:
/Iwww.sciencedirect.com/science/article/pii/S0164121215001624

V. R. Basili and H. D. Rombach, “The tame project: Towards
improvement-oriented software environments,” [EEE Trans. Softw.
Eng., vol. 14, no. 6, pp. 758-773, Jun. 1988. [Online]. Available:
http://dx.doi.org/10.1109/32.6156

M. Lindvall, D. Ganesan, S. Bjorgvinsson, K. Jonsson, H. S. Logason,
F. Dietrich, and R. E. Wiegand, “Agile metamorphic model-based
testing,” in Proceedings of the Ist International Workshop on
Metamorphic Testing. New York, NY, USA: ACM, 2016, pp. 26-32.
[Online]. Available: http://doi.acm.org/10.1145/2896971.2896979

S. Segura, A. Durdn, A. B. Sanchez, D. L. Berre, E. Lonca, and
A. Ruiz-Cortés, “Automated metamorphic testing of variability analysis
tools,” Software Testing, Verification and Reliability, vol. 25, no. 2, pp.
138-163, 2015. [Online]. Available: http://dx.doi.org/10.1002/stvr.1566
T. Y. Chen, J. Feng, and T. H. Tse, “Metamorphic testing
of programs on partial differential equations: A case study,” in
Proceedings of the 26th International Computer Software and
Applications Conference on Prolonging Software Life: Development
and Redevelopment, ser. COMPSAC ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 327-333. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645984.675903

T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen, “Testing
context-sensitive middleware-based software applications,” in Computer
Software and Applications Conference, 2004. COMPSAC 2004. Proceed-
ings of the 28th Annual International, Sept 2004, pp. 458-466 vol.1.
K. Y. Sim, C. S. Low, and F.-C. Kuo, “Detecting faults in technical in-
dicator computations for financial market analysis,” in 2nd International
Conference on Information Science and Engineering (ICISE), 2010, Dec
2010, pp. 2749-2754.

F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded software by
metamorphic testing: A wireless metering system case study,” in /[EEE
36th Conference on Local Computer Networks (LCN), 2011, Oct 2011,
pp. 291-294.

A. Durdn, A. Ruiz-Cortés, R. Corchuelo, and M. Toro, “Supporting
requirements verification using XSLT,” in IEEE Joint International
Conference on Requirements Engineering. 1EEE, 2002, pp. 165-172.

The Computer

