
Generative AI in the Software
Modeling Classroom: An
Experience Report with
ChatGPT and UML
Javier Cámara
ITIS Software — Universidad de Málaga, Spain

Javier Troya
ITIS Software — Universidad de Málaga, Spain

Julio Montes-Torres
Universidad de Málaga, Spain

Francisco J. Jaime
Universidad de Málaga, Spain

Abstract—
Formative assessment in software modeling typically involves students solving problems with
limited support from instructors or on their own without any automated support. However, the
irruption of generative AI chatbots, such as ChatGPT, has entirely changed the landscape in the
modeling classroom, triggering the need to re-evaluate how both formative and summative
assessments are designed and administered to students. This article describes an experience
report on the use of ChatGPT in formative assessment for software modeling in an
undergraduate software engineering course. Our study indicates that the use of generative AI
chatbots in formative assessment can contribute to effectively gauge learning progress,
increase the academic performance of students, compared to a traditional methodology, and
also raise student awareness about the tradeoffs of employing generative AI in their work.

ADMINISTERING formative assessments to
students soon after the information required to
learn a given subject has been acquired can
help to consolidate knowledge and lead to in-
creased academic performance in summative as-
sessments [9], [13]. In the context of software
engineering courses, formative assessments can
involve administering tests in the form of class-
room exercises, or homework assignments (which
can sometimes be graded and hence be partially
used as summative assessments [3]).

The irruption of generative AI in the soft-

ware engineering classroom, where students now
employ tools such as Copilot1 and ChatGPT2, is
radically changing the lay of the land [6], [10],
rendering current assessment strategies obsolete
due to the accuracy of generative AI at produc-
ing high-quality solutions, e.g., in programming
tasks [11], or software verification [8]. Under-
standably, this is an area of utmost concern for
software engineering instructors, who are starting

1https://github.com/features/copilot
2https://chat.openai.com

Published by the IEEE Computer Society © IEEE 1

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

https://github.com/features/copilot
https://chat.openai.com

to revise their assessment strategies in light of the
latest developments [12]. Despite these efforts,
little attention has been devoted so far to other
areas that go beyond the scope of programming
and that are also essential to the undergraduate
software engineering curriculum, such as soft-
ware modeling [1].

One of the core skills taught in undergraduate
software engineering courses concerns structural
modeling using class diagrams in the Unified
Modeling Language (UML) [5], which is the
de facto standard notation employed to model
object-oriented software systems. The traditional
methodology for teaching structural modeling in
UML typically involves face-to-face explanation
of the underlying theoretical concepts, demon-
strations of solutions for practical exercises per-
formed by instructors, as well as formative as-
sessments that can be assigned as homework.

Until recently, these formative assessments
could be used by instructors as an effective mech-
anism to gauge the degree to which concepts have
been correctly assimilated by students. However,
the widespread availability of generative AI tools
casts the shadow of a doubt over the effectiveness
of these methods of assessment and poses ques-
tions, such as: Can formative assessments still be
relied upon as an effective method to improve
learning and teaching efficiency in software mod-
eling? Can software modeling instructors adapt
their teaching methodology to incorporate gener-
ative AI and use it to their advantage?

Recent work on the assessment of generative
AI for software modeling tasks [4] has shown
that, while tools such as ChatGPT are able to gen-
erate UML software models (i.e., class diagrams)
that are mostly syntactically correct, the quality
of the results generated suffers from multiple
shortcomings often related to the semantics of
the entities represented in the diagram, which a
human designer with a basic working knowledge
of the notation should be able to spot. Inspired
by that work, the hypothesis formulated by our
study is that exposing students to interactive mod-
eling tasks assisted by a generative AI tool (such
as ChatGPT), can both increase their academic
performance and awareness about the trade-offs
of employing this technology, as well as enable
instructors to effectively gauge required areas of
improvement.

To contribute towards adapting software mod-
eling teaching methodologies to the new status
quo, our study tests this hypothesis by exploring
the following research questions:
(Q1): Can instructors detect required areas of

improvement for students by gauging
their perception about the quality of soft-
ware models obtained via generative AI?

(Q2): Do students who have carried out for-
mative assessments with the support of
generative AI perform better in software
modeling summative assessments, com-
pared to students who did not employ
such tool support?

(Q3): What are the perceived trade-offs of stu-
dents with respect to the use of generative
AI for software modeling tasks (in terms
of e.g., effort or quality of the solution
generated)?

Methods
This section provides an overview of the

methods employed in our study, starting with
course teaching and assessment methods, follow-
ing with data collection and analysis.

Teaching and Assessment Methods in the
Introduction to Software Engineering Course

The study was conducted during the academic
year 2022-2023 in the context of Introduction
to Software Engineering, which is a compul-
sory course that students take during the second
semester of their second year of the software
engineering and computer science degrees at the
School of Computer Science in the University
of Malaga. The course is taught over 15 weeks
and is divided into a theoretical and a practical
component. The course comprises 18 on-site lec-
tures in the theory classroom, as well as 12 lab
sessions. The practical component incorporates
a learning by doing component [2], in which
students have to develop a small software project
collaboratively, along with six to eight of their
peers. UML class diagram modeling is taught
and assessed within the theory component of the
course, independently of the practical component.

Teaching Methodology To conduct our
study, a student control group was taught UML
class diagram modeling following a traditional

2

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

methodology, and an experimental group was
taught with a modified methodology that included
the support of generative AI. Out of an over-
all population of 242 students, the experimental
group was formed by 72 students who volun-
teered, incentivized by a small increment in their
course score (cf. details in threats to validity).

Traditional Methodology. Software modeling
was taught during two lectures (each of 110 min-
utes of duration) in the classroom, where instruc-
tors: (i) performed face-to-face explanation of
the underlying theoretical concepts, (ii) illustrated
these concepts with examples, and (iii) assigned
three practical exercises to students, who had 10-
15 minutes to try to solve each exercise before
they were collaboratively solved in the white-
board with the participation of the entire class,
guided by the instructor. Classroom lectures were
complemented by a lab session during which
the instructor illustrated how to model one of
the examples seen in the classroom using the
modeling package Visual Paradigm3.

Methodology Supported by Generative AI.
Software modeling was taught following the same
procedure employed by the traditional method-
ology, but including an additional formative as-
sessment in which students had to use generative
AI —ChatGPT in particular— to carry out two
modeling tasks with the support of the chatbot4.

In the handout of the exercise, students re-
ceived instructions for the use of ChatGPT, in-
cluding how to write prompts to obtain class dia-
grams as response and a sample conversation. The
explanations focused on the PlantUML notation5,
because it includes a textual notation that can be
automatically translated into a graphical represen-
tation. Next, the two tasks were described.

In the first task, a set of requirements about
a management application for theaters and plays
was provided. Students were asked to obtain a
class diagram for the application by entering a
prompt. If they were not satisfied by ChatGPT’s
response, they could chat with it to improve
the response. If the best response obtained by

3https://www.visual-paradigm.com/
4A repository including artifacts such as student handouts,

survey, and anonymized results can be found at https://github.
com/javier-camara/teaching-mod-UML-ChatGPT.

5http://plantuml.com

ChatGPT after several interactions did not satisfy
the student, they could improve it manually.

In the second task, students were given a
class diagram about books, copies and authorship
consisting of four classes. They were asked to try
to obtain the same class diagram by entering a
prompt into ChatGPT. If a similar diagram was
not obtained, they could continue the conversation
with ChatGPT to try to obtain a diagram as close
as possible to the original.

Student Assessment The theoretical and
practical components of the course had a weight
of 20% and 80% of the final score, respectively.
The summative assessment of the theoretical
component was divided into a multiple-choice
test and a UML class diagram modeling exercise,
which had weights of 75% and 25%, respectively.
In the UML exercise students received the de-
scription of a system for which they were asked
to write a class diagram. During the exercise, stu-
dents did not have any access to the Internet nor
to class materials. The score of the UML exercise
ranged from 0 to 10. For marking, instructors
initially assigned the highest score to the student
and started subtracting points based on the errors
found in diagrams: absence of classes, super-
fluous classes, incorrect multiplicities, incorrect
inheritance relations, etc. All instructors agreed
upon the subtraction mechanism, consulting with
each other cases that were not entirely clear.

Our study focuses exclusively on the UML
class diagram modeling exercise as the part of
the summative assessment used to measure the
academic performance of all students (both in the
control and experimental groups).

Data Collected
To answer the research questions in our study,

we collected information from multiple sources:

Formative Assessment (AI-Supported)
Submissions For the two exercises described
in the methodology supported by generative AI,
students had to submit their conversation with
ChatGPT, the final diagram obtained, as well
as a description of the problems encountered in
the solution returned by ChatGPT and of what
aspects had to be improved to obtain a better
solution. Students had three weeks to complete

3

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

https://www.visual-paradigm.com/
https://github.com/javier-camara/teaching-mod-UML-ChatGPT
https://github.com/javier-camara/teaching-mod-UML-ChatGPT
http://plantuml.com

their assignment. Overall, 72 submissions were
collected.

Formative assessments were evaluated focus-
ing on the skills students should have acquired
when learning to model class diagrams. Con-
cretely, exercises were assessed for consistency,
i.e. checking whether students made a genuine
attempt, taking into consideration the degree to
which they were able to spot errors in ChatGPT’s
responses related to: (i) entities, (ii) attributes,
(iii) inheritance, (iv) associations, (v) redundant
associations and (vi) multiplicities. To have a
reference about the accuracy of student percep-
tions, instructors independently evaluated Chat-
GPT’s results obtained by every student during
the formative assessment.

Survey At the end of the submission of their
formative assessment with ChatGPT, students
were asked to fill in a survey with three objec-
tives: (i) assessing whether students were able to
identify the strengths and weaknesses of Chat-
GPT based on the modeling task they had been
asked to perform (with results feeding into Q1
and Q3), (ii) fostering critical thinking abilities
in students by asking about perceived tradeoffs of
the use of generative AI technology for modeling
(with results feeding into Q3), and (iii) collect-
ing contextual information about the experience
of the students that might be relevant but not
directly captured in other questions. The survey
comprises 24 questions, out of which the first
block (15 questions) target objective (i) and are
based on Likert scales that include the categories
{None, Almost none, Sometimes, Almost all,
All} for questions such as “Do diagrams include
all the necessary relations?”. The second block
(6 questions) targets objective (ii) and combines
yes/no questions such as “Does ChatGPT always
generate the same result for the same prompt?”
with open-ended questions such as “Do you think
that ChatGPT is a suitable tool for generating
useful models?”. Finally, the third block contains
three open-ended questions so that students can
provide further context and thoughts about their
experience. A total of 55 answers were collected.

Summative Assessment Grades The re-
sults of the UML class diagram modeling summa-
tive assessment described in student assessment

were also collected to feed into the analysis
required to answer Q2. Overall, the results for
242 students were collected.

Statistical Techniques
Q1 – Learning Progress Gauging This
question is only applicable to students who took
the AI-supported formative assessment. To de-
termine the accuracy of student perception with
respect to the quality of the class diagrams gen-
erated by ChatGPT, we conducted a Pearson
correlation test between survey answers (first
block of 15 questions) provided by students, and
those provided by the independent evaluation of
the instructors, who answered the same survey
questions based on the ChatGPT conversation
logs and results generated by students during the
formative assessment.

Q2 – Student Performance Of the 242 stu-
dents involved in the study, 72 (≈ 30%) belong
to the group in which the methodology supported
by generative AI was implemented (ChatGPT
Group). The remaining 170 followed the tradi-
tional methodology (Control Group). To deter-
mine whether the ChatGPT Group performed bet-
ter than the Control Group in the UML exercise,
statistical hypothesis testing was employed.

The first step was a normality assessment by
the Shapiro-Wilk test [14]. This test evaluates
the null hypothesis (H0) that the sample comes
from a normally distributed population. Hence,
the alternative hypothesis (Ha) states that the
population where the sample comes from is non-
normal.

Once the normality tests were performed, re-
sults revealed that the comparison of the arith-
metic means of the ChatGPT and Control Groups
should be made with a non-parametric test. The
Wilcoxon rank sum test [7] was chosen for this
purpose as it is the most widely used non-
parametric test for comparing two independent
populations. A one-sided test was run considering
the following null and alternative hypotheses:
H0 = The arithmetic mean of the UML exercise
marks is lesser for the ChatGPT Group than it
is for the Control Group; Ha = The arithmetic
mean of the UML exercise marks is greater for the
ChatGPT Group than it is for the Control Group.

Every statistical test was performed at a sig-

4

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

nificance level of α = 0.05; thus, p-values were
obtained with a 95 % confidence interval. A p-
value > α suggests that there is evidence to
accept H0. On the contrary, if the p-value is lesser
than α, H0 is rejected and Ha is assumed to be
true.

Results
Survey Figure 1 summarizes the results of the
first part of the survey, which relates to the
quality of the diagrams generated by ChatGPT (as
identified both by students and instructors) and is
divided into three blocks. Block (a) corresponds
to the inclusion of necessary elements in the dia-
gram, showing that students identify the presence
of elements in the categories “All of them” or
“Almost all” in more than 90% for classes, 70%
for relations, and less than 50% for multiplicities.

Block (b) concerns the syntactical correctness
of the elements represented and shows that at-
tributes, simple associations, and generalization
relations are the categories with highest percent-
ages in the categories “Always” and “Almost
always” (≈ 83%, 65% and 46%, respectively).

Block (c) includes the Pearson correlation co-
efficients between student and instructor answers,
which tell us how accurate the perception of
students in (a) and (b) was. We can observe
that, although students did reasonably well (all
correlation coefficients are positive), they were
better at identifying missing relations (0.640),
compared to missing classes (0.318), while they
struggled identifying whether aggregation (0.180)
and generalization (0.339) relations were cor-
rectly represented.

Block (d) relates to the semantic correctness
of elements and shows that while class names are
found to be meaningful (almost) always (98%),
on the other end of the spectrum multiplicities
and role names score 17% and 31%, respectively.

Figure 2 shows results about the experience of
students with the tool. Block (a) shows that most
students agree that ChatGPT is an interesting
tool to learn class diagram modeling (≈71%)
while it also has to improve to provide better
diagrams, faster (≈69%). Block (b) shows that
when the same prompt is supplied more than once
to ChatGPT, relations and multiplicities are the
elements that experience most variability— 99%
of students acknowledge that ChatGPT does not

generate results deterministically. Finally, block
(c) shows that almost 60% of students required
five or more attempts to generate the desired
result.

Summative Assessment Performance
Figure 3 shows a boxplot for the UML
summative assessment scores in the control and
experimental groups. The arithmetic means of
the scores of the ChatGPT and the control groups
are, respectively, 6.056 and 4.62. Running the
Shapiro-Wilk test for each sample produced a
p-value of 9.878× 10−5 for the ChatGPT Group
and a p-value of 0.001 for the Control Group. In
both cases, we reject H0 and conclude that every
sample comes from a non-normal population.
Student’s t-test requires the assumption of
normality to be met. Therefore, the Wilcoxon
rank sum test was chosen to compare the means
of the two populations. The p-value for the
one-sided test was 6.335 × 10−5, which clearly
leads to the conclusion that Ha has to be true.
Consequently, the ChatGPT group performed
clearly better than the control group in the UML
summative assessment.

Discussion
Q1 – Learning Progress Gauging

The results in Figure 1 and described in results
show that students did not have entirely accurate
perceptions of the performance of ChatGPT in
class diagram modeling. Although they did a fair
job at detecting some strengths and weaknesses
of ChatGPT that are in line with the results
obtained by a recent work on the assessment of
generative AI for software modeling tasks [4],
they struggled at correctly identifying the lack of
inclusion of some elements like classes, or the
correct representation of some elements, notably
aggregation relations and generalizations. These
results indicate that it is feasible for instructors
to gauge with a relatively high level of accuracy
on which areas students still need to improve,
providing a valuable tool to inform potential
changes on their teaching strategy.

Q2 – Student Performance
Students who followed the methodology sup-

ported by generative AI received the same train-
ing as the students who followed the traditional

5

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

Classes

Relations

Multiplicities Answer
None of them
Almost none
Sometimes
Almost all
All of them

Students Instructors

29% 35% 16%

35% 37% 24% 4%

58% 36%

20%

51% 49%

22% 60% 18%

11% 51% 36% 2%

6%

(a) Inclusion (Do diagrams include all the necessary elements?).

Answer
Never
Hardly ever
Sometimes
Almost always
Always

Attributes

Operations

Simple associations

Aggregation relations

Composition relations

Generalization relations
Students Instructors

9% 37% 27% 22% 5%

5% 20% 45% 25% 5%

5% 27% 34%

24% 41% 11%

24% 29% 43% 4%

29% 54% 13% 4%

25% 9%

18% 69% 11%2%

25% 25% 44% 2%4%

7% 64% 11%24% 18%

2%11% 35% 33% 20%

5% 20% 42% 25% 7%

7% 9% 25% 18% 40%

(b) Syntactic correctness (Are elements correctly represented in the diagram?).

Question PCC
Do diagrams include all the necessary multiplicities? 0.449
Do diagrams include all the necessary relations? 0.640
Do diagrams include all the necessary classes? 0.318
Are generalization relations correctly represented in the diagram? 0.339
Are composition relations correctly represented in the diagram? 0.484
Are aggregation relations correctly represented in the diagram? 0.180
Are simple associations correctly represented in the diagram? 0.412
Are operations correctly represented in the diagram? 0.576
Are attributes correctly represented in the diagram? 0.763

(c) Pearson correlation coefficient (PCC) between student and instructor answers.

Class names

Relation names

Role names

Multiplicities Answer
No answer
Never
Hardly ever
Sometimes
Almost always
Always

15%2% 54% 25% 2%2%

13% 18% 37% 5% 27%

20% 38% 25% 4%2% 11%

74% 24% 2%

(d) Semantic correctness (Are element labels and values meaningful/correct?).

Figure 1. Results about the quality of the diagrams generated by ChatGPT identified by students.

6

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

ChatGPT is a suitable tool for
generating useful models

Using ChatGPT for learning how
to create class diagrams is

interesting

Generating a class diagram
with ChatGPT requires more
effort than doing it manually

ChatGPT should improve to
provide more useful diagrams

more quickly Answer
Strongly disagree
Disagree
Neither agree nor disagree
Agree
Totally agree

33% 36% 29% 2%

22% 29% 13% 25% 11%

24% 47% 16% 13%

5% 39% 36% 16% 4%

(a) Student opinion about tool suitability and tradeoffs for the modeling tasks.

0

10

20

30

40

50

Roles Classes Operations Attributes Multiplicities Relations

An
sw

er
s

(m
ul

tip
le

 c
ho

ic
e)

18
(10%)

21
(11%)

24
(13%)

27
(15%)

43
(23%)

50
(28%)

2%

7%

14%

18%

15%

44%

1 2 3 4 5 More than 5

(b) Varying class diagram elements for the same prompt. (c) Attempts required.
Figure 2. Survey results about student experience with the use of ChatGPT for class diagram modeling.

ChatGPT Control

0
2

4
6

8
10

Mean
6.06ChatGPT Group

Median

4.62Control Group

Mode
7.0

4.5

8

4

Figure 3. Comparison of control and experimental
group performance in summative assessment.

methodology. Additionally, they performed the
two tasks where they had to use ChatGPT. As
shown in the data of Figure 3, we have evidence
supporting that in general, students who par-
ticipated in the ChatGPT formative assessment
performed better in the summative assessment
about UML class diagram modeling.

Our interpretation for these results is that stu-

dents who participated in the ChatGPT formative
assessment employed more time reasoning about
the different elements involved in UML class
diagrams, such as attributes, classes, and associ-
ations. Deciding whether ChatGPT was good at
modeling these elements required them to think
about the kind of solution that should be returned
by ChatGPT, so they needed to look carefully into
how to properly model class diagrams.

Q3 – Perceived Tradeoffs
Survey results show that, while students in

general have a positive opinion about the useful-
ness of ChatGPT to learn class diagram modeling,
half of them also acknowledge that employing the
tool to obtain a fully-fledged solution requires
more effort than building diagrams manually
from scratch. Moreover, many students are not
convinced about the usefulness of the diagrams
generated. Interestingly, these results are aligned
with reflections provided by many students in the
comments section of the survey, who explicitly
acknowledge that ChatGPT does not seem to
understand the problem at hand, and that a thor-
ough revision of the results is always required.
However, this does not seem to be considered
a problem, with multiple students indicating that

7

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

the tool is useful to obtain a preliminary low-
cost solution that can be later improved upon
manually. These reflections are indicators that
the main tradeoffs perceived by students are that
little effort is required to obtain low-quality so-
lutions, whereas correct solutions require much
more effort—even more than the effort required
by manual correction.

Threats to Validity
The data from the control and experimental

groups were obtained from students who were
trained by different instructors. Despite this dif-
ference, all instructors followed the same teaching
and assessment methods and synchronized often
to guarantee homogeneous practices. Moreover,
the ChatGPT formative assessment was taken by
72 of the 242 students, meaning that the split be-
tween experimental and control groups is approx-
imately 30-70%. This is due to the fact that im-
posing upfront which students would participate
in the formative assessment was deemed unfair
because the fraction of students (unwillingly) left
out in the control group would not be able to reap
the benefits of the approach. Hence, students were
incentivized with an extra +0.5/10 in their overall
course score to volunteer. In any case, the 30-70%
split is not considered to be a problem because
the size of the experimental group is enough to
deem as reliable the p-values obtained in non
parametric tests like the ones employed, which
are considered to be more robust than parametric
tests, even with small samples.

An additional threat to validity concerns the
potential imbalance in learning experiences be-
tween the traditional methodology and generative
AI groups. It is important to clarify that both
groups, including those following the traditional
methodology, were assigned a series of modeling
homework exercises without a time limit. This
commonality partially mitigates concerns regard-
ing time allocation discrepancies. However, we
acknowledge that the additional exposure to gen-
erative AI tasks may have conferred an advantage
to the experimental group. To address this in
future studies, we will consider equalizing the
extent of additional experiences between groups,
ensuring a more balanced comparison of learning
outcomes. Moreover, our study acknowledges a
limitation due to not conducting initial assess-

ments of students’ software modeling knowledge.
This omission means we could not account for
baseline knowledge differences between groups.
However, this concern is mitigated as our partic-
ipants are 2nd-year students with very limited or
no exposure to software modeling, both academi-
cally and professionally. Therefore, the likelihood
of significant discrepancies in software model-
ing experience between the groups is minimal.
We also acknowledge the possibility of varying
motivation levels and inherent abilities among
students based on group assignment. However,
this concern is mitigated by the fact that the
population includes students both in the control
and experimental group from every cohort that
participated in the study, and that all cohorts have
similar entry-level academic requirements.

THE irruption of generative AI poses new
challenges to assessment strategies in software
engineering, particularly when it comes to take-
home assignments in which instructors are unable
to directly supervise student work. However, our
study has shown how actively fostering the use
of generative AI tools in the software model-
ing classroom has the potential to increase the
academic performance of students, to make them
aware of the tradeoffs of using such technology,
and to preserve the ability of instructors to effec-
tively gauge learning progress despite the use of
generative AI by students.

Although our study has been carried out in
the specific context of using ChatGPT for UML
class diagram modeling, we posit that the ben-
efits of using our approach are generalizable to
other settings in the software engineering class-
room. Implementing analogous strategies requires
careful assessment design that enables students
to: (i) explore in a directed way the use of
available tools, and (ii) critically reflect upon
their experience, so that they can make better-
informed future decisions about the use of AI
technology in a given context of the software
engineering process. Such assessment design can
be supported and informed by prior knowledge
about the behavior and tradeoffs of the technology
employed, obtained for instance from exploratory
studies like the one used in our work [4].

We believe that devising teaching approaches
that share the philosophy embedded in our study

8

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

can help software engineering instructors to train
competent professionals able to assess the suit-
ability of using generative AI technology in dif-
ferent contexts.

ACKNOWLEDGMENTS
This work was partially funded by the Spanish

Government (FEDER/Ministerio de Ciencia e In-
novación–Agencia Estatal de Investigación) under
projects TED2021-130523B-I00 and PID2021-
125527NB-I00.

REFERENCES
1. Mark Ardis, David Budgen, Gregory W. Hislop, Jeff

Offutt, Mark Sebern, and Willem Visser. Se 2014: Cur-

riculum guidelines for undergraduate degree programs

in software engineering. Computer, 48(11):106–109,

2015.

2. Martin Bernreuther and Hans-Joachim Bungartz.

Learning by Doing: Software Projects in CSE Educa-

tion. In Vassil N. Alexandrov, Geert Dick van Albada,

Peter M. A. Sloot, and Jack Dongarra, editors, Compu-

tational Science – ICCS 2006, pages 161–168, Berlin,

Heidelberg, 2006. Springer Berlin Heidelberg.

3. Javier Camara and David Garlan. Learning by re-doing:

an experimental study on the impact of repetition of

formative assessments in a formal methods course for

software engineers. IEEE Software, July 2023.

4. Javier Cámara, Javier Troya, Lola Burgueño, and An-

tonio Vallecillo. On the assessment of generative AI

in modeling tasks: an experience report with ChatGPT

and UML. Software and Systems Modeling, 22:781–

793, 2023.

5. Martin Gogolla. Unified Modeling Language, pages

3232–3239. Springer US, Boston, MA, 2009.

6. Mohanad Halaweh. Chatgpt in education: Strategies for

responsible implementation. 2023.

7. M. Hollander, D.A. Wolfe, and E. Chicken. Nonparamet-

ric Statistical Methods. Wiley Series in Probability and

Statistics. Wiley, 2013.

8. Sajed Jalil, Suzzana Rafi, Thomas D. LaToza, Kevin

Moran, and Wing Lam. Chatgpt and software testing

education: Promises perils. In 2023 IEEE International

Conference on Software Testing, Verification and Vali-

dation Workshops (ICSTW), pages 4130–4137, 2023.

9. Jeffrey D Karpicke and Henry L Roediger III. Expand-

ing retrieval practice promotes short-term retention, but

equally spaced retrieval enhances long-term retention.

Journal of experimental psychology: learning, memory,

and cognition, 33(4):704, 2007.

10. Marta Montenegro-Rueda, José Fernández-Cerero,

José Marı́a Fernández-Batanero, and Eloy López-

Meneses. Impact of the implementation of chatgpt in

education: A systematic review. Computers, 12(8):153,

2023.

11. Eng Lieh Ouh, Benjamin Kok Siew Gan, Kyong Jin

Shim, and Swavek Wlodkowski. ChatGPT, Can You

Generate Solutions for my Coding Exercises? An Eval-

uation on its Effectiveness in an undergraduate Java

Programming Course. arXiv preprint arXiv:2305.13680,

2023.

12. Tung Phung, Victor-Alexandru Pădurean, José Cam-

bronero, Sumit Gulwani, Tobias Kohn, Rupak Majum-

dar, Adish Singla, and Gustavo Soares. Generative AI

for Programming Education: Benchmarking ChatGPT,

GPT-4, and Human Tutors. International Journal of

Management, 21(2):100790, 2023.

13. Henry L Roediger III and Jeffrey D Karpicke. The power

of testing memory: Basic research and implications for

educational practice. Perspectives on psychological

science, 1(3):181–210, 2006.

14. Samuel Sanford Shapiro and Martin B Wilk. An anal-

ysis of variance test for normality (complete samples).

Biometrika, 52(3/4):591–611, 1965.

Javier Cámara is an Associate Professor of Com-
puter Science at the University of Malaga, 29071
Malaga, Spain, and Honorary Visiting Fellow at the
Department of Computer Science, University of York,
YO1 5GH Heslington, United Kingdom. His research
interests include self-adaptive and autonomous sys-
tems, software architecture, formal methods, and AI-
enabled systems. He received his European Ph.D.
degree with honors in computer science from the Uni-
versity of Malaga. Contact him at jcamara@uma.es or
visit https://javier-camara.github.io/.

Javier Troya is an Associate Professor of Soft-
ware Engineering at the University of Malaga, 29071
Malaga, Spain. Previously, he was a post-doctoral
researcher as well as Assistant and Associate Profes-
sor at the University of Seville, 41004 Seville, Spain
(2016 to 2021), and a post-doctoral researcher in
the TU Wien, 1040 Vienna, Austria (2013 to 2015).
He obtained his International PhD with honors from
the University of Malaga (2013), and was awarded in
2020 with the I3 Certificate by the Spanish Ministry
of Science, Innovation and Universities. His current
research interests include model transformation test-
ing, uncertainty modeling and digital twins. Contact
him at jtroya@uma.es or visit https://javiertroyauma.
github.io/.

9

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

jcamara@uma.es
https://javier-camara.github.io/
jtroya@uma.es
https://javiertroyauma.github.io/
https://javiertroyauma.github.io/

Julio Montes-Torres is an Interim Professor at the
University of Malaga, 29071 Malaga, Spain. Previ-
ously, he worked as a Data Scientist at the Cancer
Molecular Biology Laboratory of the Medical-Sanitary
Research Center (CIMES), 29010 Malaga, Spain. He
received his BS and MS in Computer Science from
the University of Malaga. Contact him at julio@lcc.
uma.es.

Francisco J. Jaime is an Interim Professor at the
University of Malaga, 29071 Malaga, Spain. Previ-
ously, he worked as a Software Engineer for a pri-
vate company focused on machine learning and data
mining. He obtained his international PhD with honors
from University of Malaga (2011) regarding computer
arithmetic and ASIC implementation. Contact him at
franj@uma.es.

10

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MS.2024.3385309

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 10,2024 at 08:15:58 UTC from IEEE Xplore. Restrictions apply.

julio@lcc.uma.es
julio@lcc.uma.es
franj@uma.es

	Methods
	Teaching and Assessment Methods in the Introduction to Software Engineering Course
	Teaching Methodology
	Student Assessment

	Data Collected
	Formative Assessment (AI-Supported) Submissions
	Survey
	Summative Assessment Grades

	Statistical Techniques
	Q1 – Learning Progress Gauging
	Q2 – Student Performance

	Results
	Survey
	Summative Assessment Performance

	Discussion
	Q1 – Learning Progress Gauging
	Q2 – Student Performance
	Q3 – Perceived Tradeoffs
	Threats to Validity

	ACKNOWLEDGMENTS
	REFERENCES
	Biographies
	Javier Cámara
	Javier Troya
	Julio Montes-Torres
	Francisco J. Jaime

