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Abstract
This paper introduces a novel approach for runtime validation and
anomaly detection in Digital Twins. We enhance the trace align-
ment capabilities of the Needleman-Wunsch dynamic program-
ming algorithm to enable continuous system state monitoring. Our
method overcomes the limitations of previous works by eliminat-
ing the need for time series preprocessing or predefined behavioral
constraints. By aligning traces and utilizing sliding windows, we
periodically analyze the most recent snapshots to detect anom-
alies, delays, and deviations between the twins at runtime. This
technique improves anomaly detection accuracy and system diag-
nostics by leveraging the behavioral duplication inherent in Digital
Twins. We validated our prototype with elevator behavioral traces,
demonstrating its effectiveness in measuring behavioral fidelity
and monitoring system safety.

CCS Concepts
• Software and its engineering → Operational analysis.
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1 Introduction
Digital Twins have emerged as a trending practice for designing,
maintaining, and operating complex systems in various domains, in-
cluding manufacturing, energy, construction, and human health [2].
As a relatively new concept in the literature, many definitions have
been proposed to describe them. This work uses the following
terminology: a Digital Twin (DT) is a virtual representation of a
real-world entity or process (the Physical Twin, PT), synchronized at
a specified frequency and fidelity [3]. The twinned systems (DT and
PT), the connections between them, and the set of system services
comprise the so-called Digital Twin System (DTS) [10].

Depending on the system’s purpose, the DT replicates various
characteristics of its physical counterpart, such as appearance, con-
straints, and behavior [2]. This replication is the key potential of the
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DT paradigm, as it reduces costs and risks throughout the system’s
lifecycle. By exploring potential scenarios without endangering the
actual system, the DTS can predict and prevent potentially unsafe
states at runtime [4].

This potential is especially leveraged in complex systems such
as Cyber-Physical Systems (CPSs), which interact with uncertain
environments. Ensuring that both the DT and PT exhibit faith-
ful behavior is crucial in such contexts. Otherwise, the system
might provide unreliable predictions or recommendations. Various
methods exist in the literature to validate CPS behavior, including
anomaly detection [6], runtime monitoring using constraints [7],
and Complex Event Processing (CEP) [5].

Although widely used in current practices, these methods have
some limitations. Anomaly detection typically involves analyzing
the system’s history to identify non-compliant behavior, often re-
quiring preprocessing the time series to remove trends [6]. Runtime
monitoring and CEP necessitate defining thresholds, temporal con-
straints, or rules to specify the expected behavior. These approaches
might not account for uncommon scenarios or corner cases, poten-
tially leaving the system vulnerable [7]. Additionally, these methods
do not leverage the potential existence of a virtual replica, which
DTSs include. They primarily determine whether the current state
of the system is valid based on predefined rules, constraints, or
historical data, rather than utilizing continuous, dynamic feedback
available from a DT.

There are a few studies in the literature addressing validation
in the context of DTs [2]. For example, Xu et al. [14] propose a
method that uses Generative Adversarial Networks to automati-
cally generate a replica of the PT’s behavior and detect anomalous
readings. However, this method only detects anomalies and does
not account for acceptable delays between the twins. Moreover,
trace comparisons leave no room for small delays between the
recorded states of the twins but require that they happen at ex-
actly the same time. This is often unrealistic, especially since there
may be small delays when the communication used to transmit the
states is via TCP or similar mechanisms or when the clocks of the
two twins are not perfectly synchronized. To partly address these
issues, Lugaresi et al. [8] suggested variations of the dynamic pro-
gramming algorithms Longest Common Subsequence (LCSS) and
Dynamic Time Warping (DTW) to analyze the runtime behavior
of the twins. This approach provides a similarity score from 0 to 1
but, unfortunately, does not allow identification of the regions that
produce the dissimilarities. Then, in a previous work [11, 13], we
introduced a trace alignment algorithm based on another dynamic
programming algorithm, namely Needleman-Wunsch, to identify
anomalies or delays that overcome these problems, but it is limited
to offline analysis, i.e., it was not designed for runtime monitoring.

This paper addresses the mentioned shortcomings by leveraging
the DTs’ ability to duplicate the PT’s behavior to identify deviations
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Figure 1: Trace alignment for Scenario (4-0-4).

between the twins at runtime, detect delays, and diagnose anom-
alies. Our approach does not require time-series preprocessing or
the definition of behavioral constraints and rules. We enhance our
previous proposal [11, 13], by performing alignments at runtime for
continuous monitoring of the system’s state, measuring behavioral
fidelity between the twins, and using sliding windows to analyze
the last n snapshots periodically.

This short paper presents the first application and prototypical
implementation of this approach, which has been demonstrated
using one exemplar system: an elevator.

2 Background
2.1 Running example: An Elevator
The elevator subject to study is located in a four-story building at the
University of Mondragón in Spain, operating between floors 0 and 4.
It serves students who cannot use the stairs andmaintenance staff to
transport heavy equipment. To ensure its reliability, the university
wants to deploy a DTS to monitor the elevator’s operation and
maintenance, aiming to minimize downtime.

The virtual replica is the commercial simulator Elevate, which
reproduces the acceleration between floors. This acceleration data
helps determine the elevator’s speed and position to derive equip-
ment degradation and optimize its configuration.

Figure 1 shows the acceleration pattern for the elevator’s journey
from the 4th floor to the ground floor (timestamps 0.5 to 18.5 in DT),
a stop, and the return to the 4th floor (timestamp 37.3 to 55.3 in DT).
The acceleration peaks are divided into two groups: descent and
ascent. The first peak indicates the descent’s negative acceleration,
and the second peak marks the positive acceleration required to
brake on the ground floor. The latter two peaks correspond to the
ascent back to the 4th floor.

Despite some noise in the PT’s data, both twins’ transition peaks
are similar. However, the PT exhibits a unique behavior that the DT
does not replicate. After braking in either direction, an additional
small acceleration pattern is introduced to smooth the stop and
enhance the user experience. This pattern, specific to this elevator
model, should be noted as a discrepancy between the twins’ traces.
Figure 1 also shows a small initial delay in the PT behavior, due to
the elevator start delay. Finally, we included a synthetic anomaly in
the DT’s trace from timestamp 55.4 to 57.4 to illustrate additional
aspects of our approach.

2.2 Measuring Fidelity using Trace Alignment
2.2.1 Alignment Algorithm. Recently, we presented a proposal to
measure the fidelity of the behavior of two twins using a trace align-
ment algorithm [13]. A trace is a sequence of consecutive snapshots,
each representing the system’s state when it was recorded. These
snapshots are sampled with a constant period, generating a trace of
equally spaced snapshots. In Figure 1, we present the traces of the
PT and DT for the scenario (4-0-4). Each marker in the traces repre-
sents a snapshot containing the properties of interest that describe
the system’s state. For the elevator’s example, as we are interested
in its trajectory, we consider the timestamp and the acceleration.

Using this discrete behavior representation, we define a func-
tion to measure the similarity between each snapshot and deter-
mine their alignment based on a threshold known as the Maximum
Acceptable Distance (MAD). The MAD is the maximum absolute
difference between each of the properties of interest, typically 2
or 3 times the precision of the measurement tool used [13]. In the
elevator case, the MAD is set to 0.15𝑚/𝑠2, given the accelerometer’s
precision of 0.05𝑚/𝑠2.

Once the similarity level between snapshots is calculated, we
apply a trace alignment algorithm to find the optimal alignment
between traces, maximizing the similarity between the pairs of
aligned snapshots. The alignment algorithm is adapted from the
dynamic programming algorithm Needleman-Wunsch (NDW) [12],
originally used for the global alignment of sequences of characters.
Our algorithm aligns each snapshot with at most one snapshot
of the other trace or with a gap, depending on their similarity. If
the snapshots are sufficiently similar, meaning their difference is
smaller than the MAD, they are paired as a match. If their difference
exceeds the MAD, they may be paired as a mismatch or remain
unpaired, creating a gap.

In Figure 1, the alignment shows over 96.25% of matched snap-
shots, 0.72% of mismatched snapshots, and 3.02% gaps. Mismatches
typically occur when adjacent snapshots match, but some middle
snapshots of both traces do not fall within the MAD. These mis-
matches can be interpreted as anomalies. Since the penalty for gaps
is higher than for mismatches, gaps are included only when no
unpaired snapshots are available in the neighboring snapshots of
the other trace. Gaps usually appear when there are delays in the
behavior. For instance, Figure 1 shows that 3% of the gaps are dis-
tributed between the beginning of the alignment and the synthetic
gap. We are recording the twins’ behavior in the same period. At the
beginning of the trace, the PT’s descent starts a few seconds later,
so corresponding snapshots of the DT’s trace are missing, which
are thus labeled as gaps. Similarly, a few extra snapshots appear at
the end of the DT’s trace to compensate for the initial delay. The
anomalous snapshots are labeled as gaps since the corresponding
simultaneous snapshots align with the extra ones. This could be
interpreted as a stuttering situation that is corrected afterwards.
The mismatches are located in the braking pattern of the elevator,
pointing to an anomaly that does not exist in the other trace.

2.2.2 Fidelity Metrics. In our previous work [13], we measured the
fidelity between the PT and DT using the percentage of matched
snapshots (%MS) and a set of distance metrics to evaluate the simi-
larity between aligned snapshots. The %MS indicates the number of
snapshots within the Maximum Acceptable Distance (MAD), with
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higher percentages representing closer trajectories. If the %MS is
too low, it may be insufficient to evaluate the behavior accurately
using distance metrics.

The distance measures we used are the Frèchet (FD) and the
Euclidean (ED) distances [9]. The Frèchet distance calculates the
maximum distance between all matched snapshots, while the Eu-
clidean distance calculates the average distance between matched
pairs. In an ideal alignment, the %MS would be 100%, and both FD
and ED would be 0. Any decrease in %MS and increase in these dis-
tances indicates a lower level of fidelity. We previously determined
that a system with more than 95% of matched snapshots represents
a good alignment. If the %MS is between 90% and 95%, we then
consider whether the FD and ED are within acceptable ranges for
our application.

In the case of the alignment in Figure 1, the %MS is below 90% due
to the initial delay, making the alignment unsatisfactory. However,
if we exclude the snapshots representing the delay (2.3% of gaps),
the %MS rises above 90% with an FD of 0.14 and an ED of 0.02,
which are acceptable for our application.

3 Proposal
3.1 Description
We propose performing this analysis at runtime to enable continu-
ous anomaly detection monitoring and correct the twins’ behavior,
avoiding potentially unsafe states. Our algorithm [13] has a time
complexity of 𝑂 (𝑛2) because it uses dynamic programming to de-
termine the optimal alignment by calculating the similarity of every
pair of snapshots. Aligning the entire trace plus one snapshot ev-
ery time a new one is sampled would lead to an increasingly slow
response from the monitoring system.

Our solution performs these alignments using the 𝑛 most recent
snapshots, employing a concept known as sliding windows. Sliding
windows are common in fields like event processing [5]. A window
is a group of consecutive events defined by a time interval with
a starting and ending time or by a number of events. Different
types of sliding windows exist, depending on how the window’s
boundaries are defined. In this work, we assume that events are
received at regular rates and that the sliding windows have a fixed
number of snapshots, referred to as the interval duration, and are
opened at regular time intervals, called the interval period.

In each interval, we use the NDW algorithm to calculate the
alignment between snapshots included in the interval and apply two
optimization techniques borrowed from the BLAST algorithm [1]:
low-complexity regions and affine gaps (see [13] for a complete
description of our algorithm). Once the two traces are aligned, we
compute the fidelity metrics for the interval, namely, the number
of matched snapshots (%MS) and the two distances, FD and ED.
Finally, based on these values, we determine the potential existence
of anomalies or delays.

3.2 Evaluation
To demonstrate and evaluate our proposal, we simulate that the
traces of scenario (4-0-4) are received as marked in their snapshots.
In the following subsections, we explore three different configu-
rations for this scenario to showcase the effect of discrepancies,
delays, and configuration parameters on the fidelity metrics.

−0.5 

0 

0.5 

−0.5 

0 

0.5 

0 

50 

100 

0 

50 

100 

0 

0.05 

0.1 

0.15 

0 10 20 30 40 50 60 70 
0 

0.05 

0.1 

0.15 

timestamp(s)

D
T

 a
cc

el
(m

/s
2)

P
T

 a
cc

el
(m

/s
2)

%
 M

S
%

 g
ap

s
F

D
E

D

Figure 2: Metrics for Scenario (4-0-4) without delay, using
sliding windows with an interval duration of 20 snapshots (2
seconds).

In the first analysis, we remove the 2-second delay from the trace
to highlight the potential for anomaly detection without the delay’s
influence. The second analysis includes the delay, allowing us to
compare the results. Both analyses consider an interval duration
of 20, meaning we consider the last 2 seconds of snapshots in each
alignment—the sampling period for the snapshots is 0.1 for both
twins. In the final example, we increase the interval duration to 100
snapshots to see how the length of the intervals affects the analysis.
In all cases, the interval period is set to 1, ensuring we analyze the
trace thoroughly without missing any snapshots. If the period was
greater than the duration, some snapshots might not be included
in the alignments.
3.2.1 Case 1: No delay, interval duration: 20 snapshots. Let us begin
aligning the traces without including the 2-second delay. The idea is
to demonstrate our approach with perfectly synchronized traces of
the system that include the small glitches and the final anomaly but
without gaps. We performed the simulated runtime analysis using
the same MAD value as the alignment described in Section 2.2.1.
The results are shown in Figure 2. Some of the acceleration curves
show a drop of around 5% in %MS, corresponding to 1 snapshot
in each window. Figure 3 shows the aligned snapshots for three
sliding windows. The first window covers a 2-second period from
timestamps 2.5 to 4.5 and contains one unpaired snapshot for each
trace: the third snapshot of the DT and the last snapshot of the PT.
These gaps are due to some variability in the sampling process.

In the case of the two anomalous glitches (the small accelera-
tion patterns implemented by the physical elevator to enhance the
user experience) and the final synthetic anomaly that we intro-
duced, they produce a drop in the percentage of matches, which is
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Figure 3: Alignments for Scenario (4-0-4)without delay, using
sliding windows with interval duration of 20 snapshots (2
seconds).

translated into an increase in the percentage of mismatches and no
increase in gaps. This leads us to classify them as anomalies. The
first two (the small glitches) produce small variations in the fidelity
metrics, while the third one (the big anomaly introduced syntheti-
cally) produces a significant decrease in the metrics, indicating a
clear anomaly. This is showcased in the second and third windows
of Figure 3. In the second window, which covers the period from
timestamps 22.5 to 24.5, three mismatches indicate that the small
acceleration pattern is an anomaly. Moving on to the third window,
which spans from seconds 57.4 to 59.4, we observe that most of
the synthetic noise does not match. The synthetic noise comprises
random values within the working range, so only the values closer
to 0 within the MAD range are aligned.

3.2.2 Case 2: Initial 2-sec delay, interval duration: 20 snapshots.
Now, we analyze the effect of a 2-second delay in the PT trace
with respect to the PT. The results, shown in Figure 4, indicate that
the %MS drastically drops during each acceleration transition. The
interval duration is too short to account for the 2-second delay in
the PT’s trace. This issue is illustrated in Figure 5, showcasing some
window alignments.

−0.5 

0 

0.5 

−0.5 

0 

0.5 

0 

50 

100 

0 

50 

100 

0 

0.05 

0.1 

0.15 

0 10 20 30 40 50 60 70 
0 

0.05 

0.1 

0.15 

timestamp(s)

D
T

 a
cc

el
(m

/s
2)

P
T

 a
cc

el
(m

/s
2)

%
 M

S
%

 g
ap

s
F

D
E

D

Figure 4: Metrics of Scenario (4-0-4) using sliding windows
with an interval duration of 20 snapshots (2 seconds).

In the first window, covering the first two seconds, we see the
initial acceleration transition in the DT, but only stationary behavior
in the PT. Similarly, in the second window, from approximately 2.5
to 4.5 seconds, the same transition appears in the PT trace, without
overlapping any part of the DT transition. This mismatch happens
in all acceleration transitions, leading to significant drops in the
%MS. In this analysis, the algorithm aligns only zero-acceleration
areas, as seen in the third window from 4 to 5.5 seconds.

The drop in %MS is less severe during the smaller brake acceler-
ation patterns. For example, the first brake pattern occurs around
23 to 23.5 seconds. One of the windows containing this pattern is
the fourth shown in Figure 5. As an anomaly, this is detected as a
mismatch, but the drop is smaller because the trace represents a
smaller portion of the window, unlike the other acceleration pat-
terns, which constitute around 80% of the window, resulting in a
more drastic drop.

In this configuration, when we look at the distance metrics (FD
and ED), we see that the highest values for both metrics happen at
the same time as %MS significantly drops during the acceleration
transitions. This occurs because in those sections, as shown in the
third window of Figure 5, only a few points of stationary behavior
are aligned, which fall within the range [0, 0.05] and result in the
lowest distance values.

3.2.3 Case 3: initial 2-sec delay, interval duration: 100 snapshots. As
we increase the interval duration to 100 snapshots, surpassing the
delay between the windows, the results in Figure 6 show no drastic
drops in %MS, which does not go below 77%. In such cases, the
remaining 20% of snapshots are gaps, equating to 20 snapshots or
approximately 2 seconds, corresponding to the delay. This is more
clearly illustrated in the windows shown in Figure 7.
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Figure 5: Alignments for Scenario (4-0-4) using sliding win-
dows with an interval duration of 20 snapshots (2 seconds).

In the first window, covering the first 10 seconds of both traces,
the transitions are aligned, and two sections of each trace are consid-
ered gaps. These gaps are precisely the initial snapshots of the PT’s
trace, which are absent in the DT due to the delay. In the second
window, progressing 2 seconds in time, the acceleration transition
of the DT is left behind, and only the PT’s transition is included,
now considered a mismatch. A similar situation occurs in the third
window, at the next DT transition around 16 seconds. These pro-
gressive movements of the window produce the value transitions
in the %MS seen in Figure 6. Finally, in the fourth window, between
seconds 14 and 24, the first braking anomaly is detected as a set of
mismatches. This window also shows the 20% of gaps, indicating
the consistent 2-second delay throughout the trace. Increasing the
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Figure 6: Metrics for Scenario (4-0-4) using sliding windows
with an interval duration of 100 snapshots (10 seconds).

window allows us to accept a certain delay, enabling the alignment
of common parts, such as acceleration curves, even if they are not
perfectly synchronized. This results in a consistent number of gaps
in certain areas, indicating the existence of a delay.

In Figure 6, the FD remains in the same range as in the previous
case, with similar values, while the ED is smoothed, fluctuating
only between 0 and 0.05. As the number of points in the average
increases, its value smooths out. The longer the interval duration,
the less significant the drops in metrics become, as it smooths out
the average values of the distance metrics and the %MS. A longer
window masks the impact of a few mismatches, gaps, or pairs of
dissimilar pairs. We should keep this in mind when setting alarm
thresholds and determining the interval duration for the detection
of anomalies or delays.

4 Conclusions and future work
In this paper, we have introduced a new runtime validation ap-
proach for DTs. This method compares the PT and DT’s behavioral
traces to measure their similarity and diagnose anomalies, delays,
and discrepancies. We present our first proof of concept using a real-
world elevator operation scenario, where the algorithm successfully
identified various anomalies and a delay. We have demonstrated
the importance of aligning the traces when using sliding windows
in the context of digital twins, because otherwise any delay or lack
of synchronization, which is rather common in these environments,
can invalidate the monitoring. This issue is not considered in most
existing proposals. In addition, our approach uses various fidelity
metrics to identify and quantify potential anomalies. This is essen-
tial to decide the degree of severity of the anomalies and raise the
corresponding alarms or mitigating effects when necessary.
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Figure 7: Alignments for Scenario (4-0-4) using sliding win-
dows with an interval duration of 100 snapshots (10 seconds).

The example presented in this paper has served to illustrate
our initial proposal, demonstrate its applicability, and show its ad-
vantages. However, we now need to conduct further research. For
example, we need to study how to determine the appropriate values
for the interval duration, depending on the specific system, its envi-
ronment, and the properties of interest. We also need to investigate
how to set the alignment algorithm parameters [13] in this context
to deal with delays, e.g., depending on how strict we are about the
twins’ synchronization. We must also define guidelines for setting
thresholds to raise alarms based on the system requirements. For
example, we could define how long an anomalous state should per-
sist before triggering an alarm, or the allowable delay between the
twins’ behaviors before raising an alert. Additionally, we plan to

study the effects of interval period and duration on the alignments
and alarm thresholds. Furthermore, we need to analyze the pro-
posal’s performance to ensure it is feasible in real-time and verify
that the algorithm’s computational time supports immediate re-
sponses. All these questions need to be investigated and thoroughly
discussed with several case studies deployed in different scenarios,
which is precisely what we plan to address next. Finally, we are
working on a testing framework to evaluate the effectiveness and
performance of our proposal in more realistic environments. To this
end, we intend to integrate our algorithm into an architecture that
facilitates communication with the twins and displays alarms and
information via a dashboard. We also plan to compare our approach
with similar proposals in the literature, using a set of real-world
examples that we are preparing as a benchmark for testing digital
twin systems.
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